Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 March 2025 | Story Andre Damons | Photo Andre Damons
Dr Willem Daffue
Dr Willem Daffue, veterinarian, adventurer, explorer, and conservationist, delivered the first plenary keynote address on the first day of the Southern African Mountain Conference (SAMC2025).

Africa’s mountains are being destroyed – not by global warming, but by small-scale farming caused by overpopulation on the continent.

This is according to Dr Willem Daffue, veterinarian, adventurer, explorer, and conservationist who delivered the first plenary keynote address on the first day of the Southern African Mountain Conference (SAMC2025). The conference, which follows a highly successful first conference in 2022, is currently taking place at the Champagne Sports Resort. It ends on 20 March 2025.

Comparing photos that he took 40 years ago in Ethiopia and the Democratic Republic of the Congo with more recent photos, Dr Daffue painted a dire picture of the future of Africa’s mountains and the unique animals found there.

Overpopulation

Dr Daffue works for the Himalayan Wildlife Project, tracks bears in the Karakoram Mountains, documents and photographs endangered species on a global level – such as the Javan rhino and Sumatran rhino. He is also involved in the Giraffe Project of the University of the Free State (UFS).

“Global warming has not yet affected Africa’s mountains. The rainfall in these areas actually increased. So has the population. Humans are destroying the mountains. The small-scale farmers have caused the most destruction. The reason for this is overpopulation.”

“Overpopulation is forcing people to invade national parks where they start farming for survival. These people are poor, uneducated, and is dependent on aid. All the animals in these areas are critically endangered.”

In his presentation, Dr Daffue talked about the Erta Ale, an active basaltic shield volcano in the Afar region of northeastern Ethiopia, the Simien Mountains in northern Ethiopia, as well as the Bale Mountains in the highlands of Ethiopia – with unique animals exclusive to the areas, including the wild ass, baboons, beisa oryx, Soemmerring's gazelle, Walia ibex, the golden jackal, and the Simien wolf.

Endangered animals

“Almost all the animals found in Ethiopia are endangered. It is the total destruction of nature. Only 4% of all mammals are still wild animals. 96% off all mammals on earth are humans and domesticated animals, and 70% of all birds on earth are chickens.”

“So, we are going to lose it. We are already past a point where we could save some of the animals and nature; it is an emergency but if we wake up now, we might still have a few things to save,” said Dr Daffue.

The answer is to curb the population growth, to educate the people, and to lift them out of poverty. Which is extremely difficult to do.

According to Dr Daffue, a conference such as the SAMC is extremely important, as it brings together different role players, including academics, researchers, communities, and policy makers. It helps in making plans, sharing knowledge, and getting policies out to people, the decision makers.

The conference

The Southern African Mountain Conference – conceptualised by the UFS Afromontane Research Unit (ARU), the African Mountain Research Foundation (AMRF), and Global Mountain Safeguard Research (GLOMOS) as a joint initiative between Eurac Research and the UNU Institute for Environment and Human Security – is unique, as it seeks to integrate the science, policy, and practitioner sectors for sustainable interventions in Southern African mountains.

Southern African mountains comprise those situated south of the Congo Rainforest and Lake Rukwa and include the mountainous islands of the western Indian Ocean. Thus, SAMC2025 is targeting Angola, the Comoros, the Democratic Republic of the Congo (southern mountains), Eswatini, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, La Réunion, South Africa, southern Tanzania, Zambia, and Zimbabwe.

The SAMC series is implemented by The Peaks Foundation (a non-profit company). SAMC2025 is held under the patronage of UNESCO.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept