Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2025 | Story Andre Damons | Photo Andre Damons
Dr Gerard Verhoef
Dr Gerard Verhoef, an intellectual property (IP) commercialisation specialist at Barnard Incorporated Attorneys, gave an oral presentation at the second Southern African Mountain Conference.

South Africa is neglecting and overlooking the economic potential of Aloe ferox, forfeiting millions in potential revenue from this ‘green gold’. In doing so, the country is denying farmers and communities the chance to prosper from the land’s true bounty and is also undermining its biodiversity.

While South Africa harvests a mere 200 tons of Aloe ferox annually, its global competitors, such as Mexico, churn out a staggering 400 000 tons of Aloe vera, says Dr Gerard Verhoef, an intellectual property (IP) commercialisation specialist at Barnard Incorporated Attorneys. He gave an oral presentation titled IKS, the public domain and Biotrade during a session on Mountain People's Livelihoods at the second Southern African Mountain Conference (SAMC2025).

Researchers, policy makers, and practitioners from across Southern Africa and beyond came together from 17 to 20 March at the scenic Champagne Sports Resort in the central Maluti-Drakensberg for SAMC2025 themed ‘Overcoming Boundaries and Barriers’.

The next rooibos

SAMC2025, under the patronage of UNESCO and organised by the University of the Free State (UFS) Afromontane Research Unit (ARU) – in partnership with the African Mountain Research Foundation (AMRF) and the Global Mountain Safeguard Research Programme (GLOMOS) – delved into critical issues around mountain ecosystems, communities, governance, and transboundary cooperation.

Aloe ferox could be the next rooibos, which is successfully using its geographical indications (GI) status to unlock value throughout the biotrade value chain, Dr Verhoef said. Other South African plants that are also an underutilised asset with economic potential for the country, include honeybush, baobab, umsuzwane, rose geranium, imphepho, Cape chamomile, Kalahari melon, mafura, sour plum, and African ginger.

A GI consists of the name of the place of origin. It links a product to a specific geographical area, which indicates the origin of where the product is produced, processed, or prepared.

Overlooking the potential of Aloe ferox, which has been scientifically proven to contain double the amino acids and 20 times more antioxidants than its international cousin, Aloe vera, Dr Verhoef explains, South Africa is not only undermining its biodiversity but also the economy. Aloe ferox is most popularly used for its laxative effect (aloe bitters) and as a topical application to the skin, eyes, and mucous membranes. It is also used for many traditional uses as well as cosmetic purposes.

Time to capitalise

According to him, Aloe ferox remains an underutilised asset, relegated to niche markets and small-scale production due to regulatory constraints and the unwillingness to obtain access and benefit-sharing (ABC) permits needed to navigate obstacles in South Africa as well as Namibia, Botswana, Zimbabwe, and Mozambique.

“This is not just an agricultural oversight; it is a glaring economic misstep. It is high time that South Africa capitalises on its green gold, turning the tables on international competitors and finally giving Aloe ferox the global podium it deserves. This is not just an agricultural oversight; it is a glaring economic misstep.

Aloe ferox could be a flagship in the global wellness market, much like rooibos has become for tea. But until we embrace and promote our indigenous resources with the same vigour as we do foreign ones, our ‘green gold’ will remain just out of reach, a latent promise unfulfilled. It’s high time South Africa capitalise and turn the tables on international competitors, finally giving Aloe ferox the global podium it deserves,” said Dr Verhoef.

The path forward, he explains, requires a radical shift in how we view and value our native species. It demands a coalition of dedicated scientists, legal advisers, and farmers to advocate for more accommodating regulations and stronger market support. The pharmaceutical and cosmetic industries – major users of aloe products – must also be brought into the fold to help recalibrate the scales in favour of Aloe ferox. South Africa’s rich biodiversity is a national treasure, yet our approach to leveraging this wealth remains timid and fragmented.

News Archive

Professor’s research part of major global programme
2011-04-04

 

Prof. Zakkie Pretorius, professor in Plant Pathology in the Department of Plant Sciences at our university

Research by Zakkie Pretorius, professor in Plant Pathology in the Department of Plant Sciences at our university, has become part of Phase II of a mayor global project to combat deadly strains of a wheat pathogen that poses a threat to global food security.

Prof. Pretorius focuses on the identification of resistance in wheat to the stem rust disease and will assist breeders and geneticists in the accurate phenotyping of international breeding lines and mapping populations. In addition, Prof. Pretorius will support scientists from Africa with critical skills development through training programmes. During Phase I, which ends in 2011, he was involved in pathogen surveillance in Southern Africa and South Asia.
 
The Department of International Development (DFID) in the United Kingdom and the Bill and Melinda Gates Foundation will invest $40 million over the next five years in the global project led by the Cornell University. The project is aimed at combating deadly strains of Ug99, an evolving wheat pathogen that is a dangerous threat to global food security, especially in the poorest nations. 
 
The Cornell University said in a statement, the grant made to the Durable Rust Resistance in Wheat (DRRW) project at Cornell will support efforts to identify new stem-rust resistant genes in wheat, improve surveillance, and multiply and distribute rust-resistant wheat seed to farmers and their families.
 
Researchers worldwide will be able to play an increasingly vital role in protecting wheat fields from dangerous new forms of stem rust, particularly in countries whose people can ill afford the economic impact of damage to this vital crop.
 
The Ug99 strain was discovered in Kenya in 1998, but are now also threatening major wheat-growing areas of Southern and Eastern Africa, the Central Asian Republics, the Caucasus, the Indian subcontinent, South America, Australia and North America.
 
Prof. Pretorius was responsible for the first description of this strain in 1999.
 
Among Cornell’s partners are national research centres in Kenya and Ethiopia, and scientists at two international agricultural research centres that focus on wheat, the Mexico-based International Maize and Wheat Improvement Center (known by its Spanish acronym as CIMMYT), and the International Center  for Agricultural Research in the Dry Areas (ICARDA), in Syria. Advanced research laboratories in the United States, Canada, China, Australia, Denmark and South Africa also collaborate on the project. The DRRW project now involves more than 20 leading universities and research institutes throughout the world, and scientists and farmers from more than 40 countries.


Media Release
28 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept