Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2025 | Story Andre Damons | Photo Andre Damons
Dr Gerard Verhoef
Dr Gerard Verhoef, an intellectual property (IP) commercialisation specialist at Barnard Incorporated Attorneys, gave an oral presentation at the second Southern African Mountain Conference.

South Africa is neglecting and overlooking the economic potential of Aloe ferox, forfeiting millions in potential revenue from this ‘green gold’. In doing so, the country is denying farmers and communities the chance to prosper from the land’s true bounty and is also undermining its biodiversity.

While South Africa harvests a mere 200 tons of Aloe ferox annually, its global competitors, such as Mexico, churn out a staggering 400 000 tons of Aloe vera, says Dr Gerard Verhoef, an intellectual property (IP) commercialisation specialist at Barnard Incorporated Attorneys. He gave an oral presentation titled IKS, the public domain and Biotrade during a session on Mountain People's Livelihoods at the second Southern African Mountain Conference (SAMC2025).

Researchers, policy makers, and practitioners from across Southern Africa and beyond came together from 17 to 20 March at the scenic Champagne Sports Resort in the central Maluti-Drakensberg for SAMC2025 themed ‘Overcoming Boundaries and Barriers’.

The next rooibos

SAMC2025, under the patronage of UNESCO and organised by the University of the Free State (UFS) Afromontane Research Unit (ARU) – in partnership with the African Mountain Research Foundation (AMRF) and the Global Mountain Safeguard Research Programme (GLOMOS) – delved into critical issues around mountain ecosystems, communities, governance, and transboundary cooperation.

Aloe ferox could be the next rooibos, which is successfully using its geographical indications (GI) status to unlock value throughout the biotrade value chain, Dr Verhoef said. Other South African plants that are also an underutilised asset with economic potential for the country, include honeybush, baobab, umsuzwane, rose geranium, imphepho, Cape chamomile, Kalahari melon, mafura, sour plum, and African ginger.

A GI consists of the name of the place of origin. It links a product to a specific geographical area, which indicates the origin of where the product is produced, processed, or prepared.

Overlooking the potential of Aloe ferox, which has been scientifically proven to contain double the amino acids and 20 times more antioxidants than its international cousin, Aloe vera, Dr Verhoef explains, South Africa is not only undermining its biodiversity but also the economy. Aloe ferox is most popularly used for its laxative effect (aloe bitters) and as a topical application to the skin, eyes, and mucous membranes. It is also used for many traditional uses as well as cosmetic purposes.

Time to capitalise

According to him, Aloe ferox remains an underutilised asset, relegated to niche markets and small-scale production due to regulatory constraints and the unwillingness to obtain access and benefit-sharing (ABC) permits needed to navigate obstacles in South Africa as well as Namibia, Botswana, Zimbabwe, and Mozambique.

“This is not just an agricultural oversight; it is a glaring economic misstep. It is high time that South Africa capitalises on its green gold, turning the tables on international competitors and finally giving Aloe ferox the global podium it deserves. This is not just an agricultural oversight; it is a glaring economic misstep.

Aloe ferox could be a flagship in the global wellness market, much like rooibos has become for tea. But until we embrace and promote our indigenous resources with the same vigour as we do foreign ones, our ‘green gold’ will remain just out of reach, a latent promise unfulfilled. It’s high time South Africa capitalise and turn the tables on international competitors, finally giving Aloe ferox the global podium it deserves,” said Dr Verhoef.

The path forward, he explains, requires a radical shift in how we view and value our native species. It demands a coalition of dedicated scientists, legal advisers, and farmers to advocate for more accommodating regulations and stronger market support. The pharmaceutical and cosmetic industries – major users of aloe products – must also be brought into the fold to help recalibrate the scales in favour of Aloe ferox. South Africa’s rich biodiversity is a national treasure, yet our approach to leveraging this wealth remains timid and fragmented.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept