Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 March 2025 | Story Andre Damons | Photo Andre Damons
Dr Gerard Verhoef
Dr Gerard Verhoef, an intellectual property (IP) commercialisation specialist at Barnard Incorporated Attorneys, gave an oral presentation at the second Southern African Mountain Conference.

South Africa is neglecting and overlooking the economic potential of Aloe ferox, forfeiting millions in potential revenue from this ‘green gold’. In doing so, the country is denying farmers and communities the chance to prosper from the land’s true bounty and is also undermining its biodiversity.

While South Africa harvests a mere 200 tons of Aloe ferox annually, its global competitors, such as Mexico, churn out a staggering 400 000 tons of Aloe vera, says Dr Gerard Verhoef, an intellectual property (IP) commercialisation specialist at Barnard Incorporated Attorneys. He gave an oral presentation titled IKS, the public domain and Biotrade during a session on Mountain People's Livelihoods at the second Southern African Mountain Conference (SAMC2025).

Researchers, policy makers, and practitioners from across Southern Africa and beyond came together from 17 to 20 March at the scenic Champagne Sports Resort in the central Maluti-Drakensberg for SAMC2025 themed ‘Overcoming Boundaries and Barriers’.

The next rooibos

SAMC2025, under the patronage of UNESCO and organised by the University of the Free State (UFS) Afromontane Research Unit (ARU) – in partnership with the African Mountain Research Foundation (AMRF) and the Global Mountain Safeguard Research Programme (GLOMOS) – delved into critical issues around mountain ecosystems, communities, governance, and transboundary cooperation.

Aloe ferox could be the next rooibos, which is successfully using its geographical indications (GI) status to unlock value throughout the biotrade value chain, Dr Verhoef said. Other South African plants that are also an underutilised asset with economic potential for the country, include honeybush, baobab, umsuzwane, rose geranium, imphepho, Cape chamomile, Kalahari melon, mafura, sour plum, and African ginger.

A GI consists of the name of the place of origin. It links a product to a specific geographical area, which indicates the origin of where the product is produced, processed, or prepared.

Overlooking the potential of Aloe ferox, which has been scientifically proven to contain double the amino acids and 20 times more antioxidants than its international cousin, Aloe vera, Dr Verhoef explains, South Africa is not only undermining its biodiversity but also the economy. Aloe ferox is most popularly used for its laxative effect (aloe bitters) and as a topical application to the skin, eyes, and mucous membranes. It is also used for many traditional uses as well as cosmetic purposes.

Time to capitalise

According to him, Aloe ferox remains an underutilised asset, relegated to niche markets and small-scale production due to regulatory constraints and the unwillingness to obtain access and benefit-sharing (ABC) permits needed to navigate obstacles in South Africa as well as Namibia, Botswana, Zimbabwe, and Mozambique.

“This is not just an agricultural oversight; it is a glaring economic misstep. It is high time that South Africa capitalises on its green gold, turning the tables on international competitors and finally giving Aloe ferox the global podium it deserves. This is not just an agricultural oversight; it is a glaring economic misstep.

Aloe ferox could be a flagship in the global wellness market, much like rooibos has become for tea. But until we embrace and promote our indigenous resources with the same vigour as we do foreign ones, our ‘green gold’ will remain just out of reach, a latent promise unfulfilled. It’s high time South Africa capitalise and turn the tables on international competitors, finally giving Aloe ferox the global podium it deserves,” said Dr Verhoef.

The path forward, he explains, requires a radical shift in how we view and value our native species. It demands a coalition of dedicated scientists, legal advisers, and farmers to advocate for more accommodating regulations and stronger market support. The pharmaceutical and cosmetic industries – major users of aloe products – must also be brought into the fold to help recalibrate the scales in favour of Aloe ferox. South Africa’s rich biodiversity is a national treasure, yet our approach to leveraging this wealth remains timid and fragmented.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept