Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 March 2025 | Story Tshepo Tsotetsi | Photo Supplied
faculty of the Humanities graduation
Congratulations to our UFS leaders of the future!

As the leaves turn and autumn settles over the Free State, a new season of celebration is upon us. Gowns are being dusted off, caps are ready to be tossed, and excitement is building as the University of the Free State (UFS) prepares to honour the Class of 2024. From 4 to 5 April 2025, the Qwaqwa Campus will host its graduation ceremonies, followed by the Bloemfontein Campus from 8 to 12 April 2025.

This year, a total of 7 994 students will walk the stage, marking a significant moment in their academic journeys. The university will host 20 graduation ceremonies across its Qwaqwa and Bloemfontein Campuses, celebrating the accomplishments of graduates across all faculties. In addition to awarding degrees and diplomas, the UFS will also confer three honorary doctorates, recognising exceptional contributions in various fields.

Graduation is more than just a ceremony; it is a defining moment. It marks the end of years of late-night studying, countless assignments, and moments of self-doubt. But more importantly, it signals the beginning of something new. Armed with their degrees, the UFS graduates will soon step into the world beyond university, ready to make their mark.

At the UFS, excellence is more than a value – it is a standard. Every graduate walking across the stage embodies the university’s commitment to producing individuals who are not only knowledgeable but also adaptable, resilient, and prepared for the ever-changing demands of the world. This is at the heart of Vision 130, UFS’s roadmap to 2034, which focuses on shaping graduates who will contribute meaningfully to both local and global communities.

For the Class of 2024, the journey has been long, challenging, and rewarding. Now, as they prepare to walk the stage, one thing is certain: the future is theirs to shape.

 

Click to view document WATCH: 2025 Graduation Livestream 

 

Click to view documentClick here to see the full schedule for the 2025 April graduations.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept