Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2025 | Story Andre Damons | Photo Supplied
Prof Nyaga
Prof Martin Nyaga at the UFS-NGS Unit sequencing room giving a talk on the Illumina NextSeq 2000 with the P3 flow cell in hand.

The University of the Free State – Next Generation Sequencing (UFS-NGS) Unit hosted a pioneering scholarly engagement initiative for Grade 11 learners from nine secondary schools in Bloemfontein. The three-day event with the theme "Frontiers of Discovery: Illuminating the Impact of Genomics in Science outreach programme” marked the first comprehensive genomics science outreach initiative in the Faculty Health Sciences.

Coordinated by Prof Martin Nyaga, Head of the UFS-NGS Unit, the programme bridged the longstanding gap through practical NGS exposure and ignited a passion for Science, Technology, Engineering, and Mathematics (STEM) by inspiring the next generation of genomic innovators using combined interactive lectures, laboratory demonstrations, career talks, and hands-on workshops. This allowed learners to directly engage with cutting-edge scientific techniques and genomic technologies, especially the scientific and evolutionally impact of Polymerase Chain Reaction (PCR) and NGS.

The initiative engaged selected Grade 11 learners from the nine schools: Brebner, Ikaelelo and Vulamasango (day 1), Atlehang, Castle Bridge School and Kaelang (day 2) and Eunice, Navalsig, and Lekhulong (day 3).

“This outreach programme marks a significant milestone in community-based genomics education in South Africa by offering high school learners the opportunity to engage with modern genomic sciences before making career decisions. The initiative particularly aimed to nurture future scientists and diversify the country’s STEM talent pipeline.

“This historic programme bridged gaps in scientific literacy and diversity in the Free State and concluded each day with a genomics quiz competition, which tested the participant’s newly acquired knowledge/exposure and provided a fun competitive learning opportunity. Six quiz winners across the three days received special prizes, and all students were awarded certificates of participation,” says Prof Nyaga.

 

Hands-on exploration and NHLS virology laboratory tour

The training was held at the UFS-NGS Unit in the School of Biomedical Sciences and at the NHLS Virology laboratories, School of Pathology, Faculty of Health Sciences. Each attending secondary school was represented by five Grade 11 learners and a life science’s educator. Each day, 15 learners and three educators observed hands-on practicals, including DNA extraction, PCR, gel electrophoresis, and DNA library preparation for sequencing on platforms such as Illumina MiSeq and NextSeq 2000.

Guided by the UFS-NGS Unit’s team members; Dr Milton Mogotsi, Hlengiwe Sondlane, Mbali Ncube, Nkosazana Shange, Somila Nazo, Sesiyanda Maseko, Surprise Baloyi, Manyi Eyong and Mamello Maku, the learners were exposed to how DNA is extracted and visualised, how the PCR machine works and how DNA libraries are prepared and sequenced.

Furthermore, a guided laboratory tour of the Virology laboratories at the NHLS was provided by Khauhelo Mafa which offered the leaners the opportunity to observe, diagnostic and molecular workflows in action, resulting in a real-time glimpse into world-class medical research and diagnostics, fuelling curiosity about the role of advanced genomics science in disease control.

 

Inspiration through expert talks

The learners were also inspired by talks from Prof Chris Viljoen, Head of the School of Biomedical Sciences, Prof Zinhle Makatini, Associate Professor and Head of Division of Virology, School of Pathology, and Dr Claudia Ntsapi, Senior Lecturer and researcher in the Department of Basic Medical Sciences at the UFS. Prof Viljoen highlighted the role of science in transforming lives and improving life expectancy, while Prof Makatini gave candid reflections on her professional journey, particularly how she pursued Medical Virology through unwavering determination and excelled to become among the pioneer women specialists in the field in South Africa. Dr Ntsapi inspired the audience with her perseverance from her humble beginnings to earning a PhD in Neurophysiological Sciences against all odds.

The speakers also delivered compelling presentations on the applications of genomics in medicine (e.g.), personalised cancer treatments), public health (e.g.), tracking HIV and COVID-19), agriculture (e.g.), resilient crops), and environmental science (e.g.), ecosystem protection), which resonated well with the learners, educators and the UFS-NGS team. A presentation on diverse career options available at the UFS Faculty of Health Sciences was further provided by Angelique Carson-Porter, a UFS representative from the Department of Nutrition & Dietetics. Her talk on different career pathways in Health Sciences broaden the learners’ horizons, fostering future aspirations.

Dr Emmanuel Ogunbayo, Dr Mogotsi, Thabisa Mpaxa, Nkosazana Shange and Eyong Manyi shared their personal career journey to be at the UFS-NGS Unit, offering advice on academic experiences and opportunities within genomics, bioinformatics, and biotechnology, while answering scholarship queries.

“The career talk opened my eyes. I’m now aiming for a biotechnology degree!” said Neliswa Thwala, a learner from Navalsig CS/S.

Following the enthusiastic response and tangible outcomes of this programme, the UFS-NGS Unit is committed to expanding this initiative, with plans to introduce similar events to other schools and developing sustained mentorship opportunities for learners interested in pursuing genomics-related careers. The UFS-NGS Unit further invites interested partners, sponsors, and stakeholders to collaborate in future outreach and capacity-building programmes to continue bridging the genomics education gap in Africa.

 

Inspire the next generation

Prof. Nyaga’s closing remarks highlighted the learners’ potential to shape the ‘omics’ workforce and stated the intention of the organising committee to expand the mentorship programmes, fostering a vibrant STEM pipeline. “This initiative represents our vision to make genomics accessible and inspire the next generation of African scientists.”

The success of this programme was driven by the UFS-NGS Unit team and was supported by Distribution Platform in Omics (DIPLOMICS).

  • For more information about the UFS-NGS Unit or future outreach programmes, please visit our website. Further pictures from the event are also available via our website.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept