Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2025 | Story Andre Damons | Photo Supplied
Prof Nyaga
Prof Martin Nyaga at the UFS-NGS Unit sequencing room giving a talk on the Illumina NextSeq 2000 with the P3 flow cell in hand.

The University of the Free State – Next Generation Sequencing (UFS-NGS) Unit hosted a pioneering scholarly engagement initiative for Grade 11 learners from nine secondary schools in Bloemfontein. The three-day event with the theme "Frontiers of Discovery: Illuminating the Impact of Genomics in Science outreach programme” marked the first comprehensive genomics science outreach initiative in the Faculty Health Sciences.

Coordinated by Prof Martin Nyaga, Head of the UFS-NGS Unit, the programme bridged the longstanding gap through practical NGS exposure and ignited a passion for Science, Technology, Engineering, and Mathematics (STEM) by inspiring the next generation of genomic innovators using combined interactive lectures, laboratory demonstrations, career talks, and hands-on workshops. This allowed learners to directly engage with cutting-edge scientific techniques and genomic technologies, especially the scientific and evolutionally impact of Polymerase Chain Reaction (PCR) and NGS.

The initiative engaged selected Grade 11 learners from the nine schools: Brebner, Ikaelelo and Vulamasango (day 1), Atlehang, Castle Bridge School and Kaelang (day 2) and Eunice, Navalsig, and Lekhulong (day 3).

“This outreach programme marks a significant milestone in community-based genomics education in South Africa by offering high school learners the opportunity to engage with modern genomic sciences before making career decisions. The initiative particularly aimed to nurture future scientists and diversify the country’s STEM talent pipeline.

“This historic programme bridged gaps in scientific literacy and diversity in the Free State and concluded each day with a genomics quiz competition, which tested the participant’s newly acquired knowledge/exposure and provided a fun competitive learning opportunity. Six quiz winners across the three days received special prizes, and all students were awarded certificates of participation,” says Prof Nyaga.

 

Hands-on exploration and NHLS virology laboratory tour

The training was held at the UFS-NGS Unit in the School of Biomedical Sciences and at the NHLS Virology laboratories, School of Pathology, Faculty of Health Sciences. Each attending secondary school was represented by five Grade 11 learners and a life science’s educator. Each day, 15 learners and three educators observed hands-on practicals, including DNA extraction, PCR, gel electrophoresis, and DNA library preparation for sequencing on platforms such as Illumina MiSeq and NextSeq 2000.

Guided by the UFS-NGS Unit’s team members; Dr Milton Mogotsi, Hlengiwe Sondlane, Mbali Ncube, Nkosazana Shange, Somila Nazo, Sesiyanda Maseko, Surprise Baloyi, Manyi Eyong and Mamello Maku, the learners were exposed to how DNA is extracted and visualised, how the PCR machine works and how DNA libraries are prepared and sequenced.

Furthermore, a guided laboratory tour of the Virology laboratories at the NHLS was provided by Khauhelo Mafa which offered the leaners the opportunity to observe, diagnostic and molecular workflows in action, resulting in a real-time glimpse into world-class medical research and diagnostics, fuelling curiosity about the role of advanced genomics science in disease control.

 

Inspiration through expert talks

The learners were also inspired by talks from Prof Chris Viljoen, Head of the School of Biomedical Sciences, Prof Zinhle Makatini, Associate Professor and Head of Division of Virology, School of Pathology, and Dr Claudia Ntsapi, Senior Lecturer and researcher in the Department of Basic Medical Sciences at the UFS. Prof Viljoen highlighted the role of science in transforming lives and improving life expectancy, while Prof Makatini gave candid reflections on her professional journey, particularly how she pursued Medical Virology through unwavering determination and excelled to become among the pioneer women specialists in the field in South Africa. Dr Ntsapi inspired the audience with her perseverance from her humble beginnings to earning a PhD in Neurophysiological Sciences against all odds.

The speakers also delivered compelling presentations on the applications of genomics in medicine (e.g.), personalised cancer treatments), public health (e.g.), tracking HIV and COVID-19), agriculture (e.g.), resilient crops), and environmental science (e.g.), ecosystem protection), which resonated well with the learners, educators and the UFS-NGS team. A presentation on diverse career options available at the UFS Faculty of Health Sciences was further provided by Angelique Carson-Porter, a UFS representative from the Department of Nutrition & Dietetics. Her talk on different career pathways in Health Sciences broaden the learners’ horizons, fostering future aspirations.

Dr Emmanuel Ogunbayo, Dr Mogotsi, Thabisa Mpaxa, Nkosazana Shange and Eyong Manyi shared their personal career journey to be at the UFS-NGS Unit, offering advice on academic experiences and opportunities within genomics, bioinformatics, and biotechnology, while answering scholarship queries.

“The career talk opened my eyes. I’m now aiming for a biotechnology degree!” said Neliswa Thwala, a learner from Navalsig CS/S.

Following the enthusiastic response and tangible outcomes of this programme, the UFS-NGS Unit is committed to expanding this initiative, with plans to introduce similar events to other schools and developing sustained mentorship opportunities for learners interested in pursuing genomics-related careers. The UFS-NGS Unit further invites interested partners, sponsors, and stakeholders to collaborate in future outreach and capacity-building programmes to continue bridging the genomics education gap in Africa.

 

Inspire the next generation

Prof. Nyaga’s closing remarks highlighted the learners’ potential to shape the ‘omics’ workforce and stated the intention of the organising committee to expand the mentorship programmes, fostering a vibrant STEM pipeline. “This initiative represents our vision to make genomics accessible and inspire the next generation of African scientists.”

The success of this programme was driven by the UFS-NGS Unit team and was supported by Distribution Platform in Omics (DIPLOMICS).

  • For more information about the UFS-NGS Unit or future outreach programmes, please visit our website. Further pictures from the event are also available via our website.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept