Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2025 | Story Andre Damons | Photo Supplied
Prof Nyaga
Prof Martin Nyaga at the UFS-NGS Unit sequencing room giving a talk on the Illumina NextSeq 2000 with the P3 flow cell in hand.

The University of the Free State – Next Generation Sequencing (UFS-NGS) Unit hosted a pioneering scholarly engagement initiative for Grade 11 learners from nine secondary schools in Bloemfontein. The three-day event with the theme "Frontiers of Discovery: Illuminating the Impact of Genomics in Science outreach programme” marked the first comprehensive genomics science outreach initiative in the Faculty Health Sciences.

Coordinated by Prof Martin Nyaga, Head of the UFS-NGS Unit, the programme bridged the longstanding gap through practical NGS exposure and ignited a passion for Science, Technology, Engineering, and Mathematics (STEM) by inspiring the next generation of genomic innovators using combined interactive lectures, laboratory demonstrations, career talks, and hands-on workshops. This allowed learners to directly engage with cutting-edge scientific techniques and genomic technologies, especially the scientific and evolutionally impact of Polymerase Chain Reaction (PCR) and NGS.

The initiative engaged selected Grade 11 learners from the nine schools: Brebner, Ikaelelo and Vulamasango (day 1), Atlehang, Castle Bridge School and Kaelang (day 2) and Eunice, Navalsig, and Lekhulong (day 3).

“This outreach programme marks a significant milestone in community-based genomics education in South Africa by offering high school learners the opportunity to engage with modern genomic sciences before making career decisions. The initiative particularly aimed to nurture future scientists and diversify the country’s STEM talent pipeline.

“This historic programme bridged gaps in scientific literacy and diversity in the Free State and concluded each day with a genomics quiz competition, which tested the participant’s newly acquired knowledge/exposure and provided a fun competitive learning opportunity. Six quiz winners across the three days received special prizes, and all students were awarded certificates of participation,” says Prof Nyaga.

 

Hands-on exploration and NHLS virology laboratory tour

The training was held at the UFS-NGS Unit in the School of Biomedical Sciences and at the NHLS Virology laboratories, School of Pathology, Faculty of Health Sciences. Each attending secondary school was represented by five Grade 11 learners and a life science’s educator. Each day, 15 learners and three educators observed hands-on practicals, including DNA extraction, PCR, gel electrophoresis, and DNA library preparation for sequencing on platforms such as Illumina MiSeq and NextSeq 2000.

Guided by the UFS-NGS Unit’s team members; Dr Milton Mogotsi, Hlengiwe Sondlane, Mbali Ncube, Nkosazana Shange, Somila Nazo, Sesiyanda Maseko, Surprise Baloyi, Manyi Eyong and Mamello Maku, the learners were exposed to how DNA is extracted and visualised, how the PCR machine works and how DNA libraries are prepared and sequenced.

Furthermore, a guided laboratory tour of the Virology laboratories at the NHLS was provided by Khauhelo Mafa which offered the leaners the opportunity to observe, diagnostic and molecular workflows in action, resulting in a real-time glimpse into world-class medical research and diagnostics, fuelling curiosity about the role of advanced genomics science in disease control.

 

Inspiration through expert talks

The learners were also inspired by talks from Prof Chris Viljoen, Head of the School of Biomedical Sciences, Prof Zinhle Makatini, Associate Professor and Head of Division of Virology, School of Pathology, and Dr Claudia Ntsapi, Senior Lecturer and researcher in the Department of Basic Medical Sciences at the UFS. Prof Viljoen highlighted the role of science in transforming lives and improving life expectancy, while Prof Makatini gave candid reflections on her professional journey, particularly how she pursued Medical Virology through unwavering determination and excelled to become among the pioneer women specialists in the field in South Africa. Dr Ntsapi inspired the audience with her perseverance from her humble beginnings to earning a PhD in Neurophysiological Sciences against all odds.

The speakers also delivered compelling presentations on the applications of genomics in medicine (e.g.), personalised cancer treatments), public health (e.g.), tracking HIV and COVID-19), agriculture (e.g.), resilient crops), and environmental science (e.g.), ecosystem protection), which resonated well with the learners, educators and the UFS-NGS team. A presentation on diverse career options available at the UFS Faculty of Health Sciences was further provided by Angelique Carson-Porter, a UFS representative from the Department of Nutrition & Dietetics. Her talk on different career pathways in Health Sciences broaden the learners’ horizons, fostering future aspirations.

Dr Emmanuel Ogunbayo, Dr Mogotsi, Thabisa Mpaxa, Nkosazana Shange and Eyong Manyi shared their personal career journey to be at the UFS-NGS Unit, offering advice on academic experiences and opportunities within genomics, bioinformatics, and biotechnology, while answering scholarship queries.

“The career talk opened my eyes. I’m now aiming for a biotechnology degree!” said Neliswa Thwala, a learner from Navalsig CS/S.

Following the enthusiastic response and tangible outcomes of this programme, the UFS-NGS Unit is committed to expanding this initiative, with plans to introduce similar events to other schools and developing sustained mentorship opportunities for learners interested in pursuing genomics-related careers. The UFS-NGS Unit further invites interested partners, sponsors, and stakeholders to collaborate in future outreach and capacity-building programmes to continue bridging the genomics education gap in Africa.

 

Inspire the next generation

Prof. Nyaga’s closing remarks highlighted the learners’ potential to shape the ‘omics’ workforce and stated the intention of the organising committee to expand the mentorship programmes, fostering a vibrant STEM pipeline. “This initiative represents our vision to make genomics accessible and inspire the next generation of African scientists.”

The success of this programme was driven by the UFS-NGS Unit team and was supported by Distribution Platform in Omics (DIPLOMICS).

  • For more information about the UFS-NGS Unit or future outreach programmes, please visit our website. Further pictures from the event are also available via our website.

News Archive

Stem cell research and human cloning: legal and ethical focal points
2004-07-29

   

(Summary of the inaugural lecture of Prof Hennie Oosthuizen, from the Department of Criminal and Medical Law at the Faculty of Law of the University of the Free State.)

 

In the light of stem cell research, research on embryo’s and human cloning it will be fatal for legal advisors and researchers in South Africa to ignore the benefits that new bio-medical development, through research, contain for this country.

Legal advisors across the world have various views on stem cell research and human cloning. In the USA there is no legislation that regulates stem cell research but a number of States adopted legislation that approves stem cell research. The British Parlement gave permission for research on embryonic stem cells, but determined that it must be monitored closely and the European Union is of the opinion that it will open a door for race purification and commercial exploitation of human beings.

In South Africa the Bill on National Health makes provision for therapeutical and non therapeutical research. It also makes provision for therapeutical embryonical stem cell research on fetuses, which is not older than 14 days, as well as for therapeutical cloning under certain circumstances subject to the approval of the Minister. The Bill prohibits reproductive cloning.

Research on human embrio’s is a very controversial issue, here and in the rest of the world.

Researchers believe that the use of stem cell therapy could help to side-step the rejection of newly transplanted organs and tissue and if a bank for stem cell could be built, the shortage of organs for transplants would become something of the past. Stem cells could also be used for healing of Alzheimer’s, Parkinson’s and spinal injuries.

Sources from which stem cells are obtained could also lead to further ethical issues. Stem cells are harvested from mature human cells and embryonic stem cells. Another source to be utilised is to take egg cells from the ovaries of aborted fetuses. This will be morally unacceptable for those against abortions. Linking a financial incentive to that could become more of a controversial issue because the woman’s decision to abort could be influenced. The ideal would be to rather use human fetus tissue from spontaneous abortions or extra-uterine pregnancies than induced abortions.

The potential to obtain stem cells from the blood of the umbilical cord, bone-marrow and fetus tissue and for these cells to arrange themselves is known for quite some time. Blood from the umbilical cord contains many stem cells, which is the origin of the body’s immune and blood system. It is beneficial to bank the blood of a newborn baby’s umbilical cord. Through stem cell transplants the baby or another family member’s life could be saved from future illnesses such as anemia, leukemia and metabolic storing disabilities as well as certain generic immuno disabilities.

The possibility to withdraw stem cells from human embrio’s and to grow them is more useable because it has more treatment possibilities.

With the birth of Dolly the sheep, communities strongly expressed their concern about the possibility that a new cloning technique such as the replacement of the core of a cell will be used in human reproduction. Embryonic splitting and core replacement are two well known techniques that are associated with the cloning process.

I differentiate between reproductive cloning – to create a cloned human embryo with the aim to bring about a pregnancy of a child that is identical to another individual – and therapeutically cloning – to create a cloned human embryo for research purposes and for healing human illnesses.

Worldwide people are debating whether to proceed with therapeutical cloning. There are people for and against it. The biggest ethical objection against therapeutical cloning is the termination of the development of a potential human being.

Children born from cloning will differ from each other. Factors such as the uterus environment and the environment in which the child is growing up will play a role. Cloning create unique children that will grow up to be unique individuals, just like me and you that will develop into a person, just like you and me. If we understand this scientific fact, most arguments against human cloning will disappear.

Infertility can be treated through in vitro conception. This process does not work for everyone. For some cloning is a revolutionary treatment method because it is the only method that does not require patients to produce sperm and egg cells. The same arguments that were used against in vitro conception in the past are now being used against cloning. It is years later and in vitro cloning is generally applied and accepted by society. I am of the opinion that the same will happen with regard to human cloning.

There is an argument that cloning must be prohibited because it is unsafe. Distorted ideas in this regard were proven wrong. Are these distorted ideas justified to question the safety of cloning and the cloning process you may ask. The answer, according to me, is a definite no. Human cloning does have many advantages. That includes assistance with infertility, prevention of Down Syndrome and recovery from leukemia.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept