Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2025 | Story Martinette Brits | Photo Supplied
Opus Cactus
Prof Maryna Boshoff from the Department of Sustainable Food Systems and Development, Lerato Mamabolo (UFS graduate, now employed at OPUS Cactus), and Sotirios Pilafidis, Head of Research and Development at OPUS Cactus, at the XI International Congress on Cacti as Food, Fodder and Other Uses, hosted by the FAO-ICARDA CactusNet in Tenerife, Canary Islands.

The University of the Free State (UFS) has formalised a collaboration with OPUS Cactus, a pioneering biotech company focused on sustainable cactus-based farming and biorefineries in semi-arid regions. This partnership builds on OPUS Cactus’ expansion at the historic Waterkloof Research Station near Bloemfontein and combines the UFS’ academic expertise with industry innovation to promote climate-smart agriculture and economic development.

OPUS Cactus, led by Joeri van den Bovenkamp-Hofman, CEO, and Sotirios Pilafidis, Head of Research and Development (R&D), specialises in transforming marginal, non-arable land into productive, resource-efficient ecosystems by cultivating the drought-tolerant Opuntia cactus. This versatile biomass supports renewable bioenergy, animal feed, food production, fermentation feedstock, and sustainable biomaterials, while contributing to carbon capture and climate mitigation efforts.

“Our mission is to unlock the full potential of Opuntia biomass for sustainable bioenergy, food, and biomaterials, advancing regenerative agriculture and climate action,” says Van den Bovenkamp-Hofman. OPUS Cactus operates dual hubs: its headquarters and R&D lab in Groningen, the Netherlands, and the flagship 1 000-hectare Waterkloof Research Centre in the Free State. The Waterkloof facility serves as a commercial farm, research platform, and demonstration site for regenerative farming techniques.

The UFS collaboration involves multiple departments, including Sustainable Food Systems and Development, Soil, Crop and Climate Sciences, and Microbiology and Biochemistry. Profs Maryna Boshoff and Carlien Pohl-Albertyn, alongside Dr Gesine Coetzer, provide academic leadership in the partnership.

Prof Boshoff explains, “This industry-academia collaboration aims to develop innovative projects utilising cactus-based products. It builds on decades of cactus research at the UFS, enabling the translation of scientific knowledge into real-world impact through scale-up and commercialisation.”

 

Bridging academic research and commercial innovation to promote climate-smart agriculture

At the core of the partnership is the Waterkloof Research Centre, home to 42 spineless Burbank cactus pear cultivars. The facility acts as a ‘living laboratory’, integrating empirical research with commercial-scale farming. “Waterkloof now offers students and researchers access to operational infrastructure that cannot be replicated in conventional academic settings,” says Prof Boshoff.

Continuing projects at Waterkloof include biogas production through an anaerobic digester, regenerative agriculture practices such as cover cropping and reduced tillage, advanced plant biotechnology to breed superior cultivars, fermentation research for alternative proteins, and the development of novel fermented foods and sustainable biomaterials.

The collaboration also plays a critical role in conserving Opuntia genetic diversity and evaluating cultivars across South Africa’s varied agro-ecological zones. “Research done by UFS and ARC scientists on cultivar selection and cultivation is applied and scaled up through OPUS Cactus’ commercial operations,” Prof Boshoff adds.

This partnership provides valuable hands-on experience and career pathways for postgraduate students and young researchers. “We offer internships and employment opportunities, with several recent UFS graduates already joining our R&D team,” says Pilafidis. “We actively seek motivated graduates passionate about sustainable agriculture and bioengineering.”

By converting semi-arid landscapes into productive, carbon-sequestering ecosystems, the UFS-OPUS Cactus collaboration exemplifies how scientific innovation, entrepreneurship, and environmental stewardship can drive climate resilience, food security, and sustainable economic growth.

“OPUS Cactus is a win for the environment, communities, and business alike,” concludes Van den Bovenkamp-Hofman.

News Archive

SmartDrive devices give UFS wheelchair users more independence
2017-12-01

 Description: Cuads Tags: SmartDrive Power Assist, accessibility, Martie Miranda, CUADS, wheelchair users 

From the left, are: David Mashape; Martie Miranda, Head of the
Center for Universal Access and Disability Support at the UFS;
and Lawrence Qamba, celebrating the recent acquisition
of two SmartDrive Power Assist devices.
Photo: Johan Roux

Students who make use of wheelchairs at the University of the Free State (UFS) will now be able to move around campus more independently than before. This is thanks to two SmartDrive Power Assist devices acquired by the university.

Accessibility is very important to the institution and with these devices clipping onto a manual wheelchair to make it motorised, students will not have to ask for help that often. It will assist them in overcoming obstacles they face every day.

Different surfaces pose different challenges 
According to Martie Miranda, Head of the Center for Universal Access and Disability Support (CUADS), one of the most important advantages of the SmartDrive machines is that it enhances the independence of students. The devices were bought with funds received from the Department of Higher Education and Training specifically allocated for accessibility and infrastructure.
 
“While the UFS is addressing inaccessibility on its campuses, which will take time, this will help to motorise wheelchairs for wheelchair users to move around more easily. Students can now move around independently without necessarily asking for help, for example, to get up very steep ramps.” Miranda says some surfaces, such as grass and gravel, has its own unique challenges for wheelchair users.

A few years coming

The SmartDrive devices are operated by a Bluetooth watch. By tapping twice on the chair or clapping twice, the motor propels the wheelchair forward and stops when tapped twice, while also braking with one’s hands. The speed can also be controlled by the user. The machines use rechargeable batteries, with a fully charged battery lasting up to 15 hours.
 
Acquiring the devices was a process of a few years, and CUADS is happy to finally employ them to the benefit of their students. Miranda says the determination and support of Prof Nicky Morgan, Vice-Rector: Operations, and the assistance of Nico Janse van Rensburg, Senior Director: Top Management, were instrumental in buying the devices.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept