Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2025 | Story Martinette Brits | Photo Supplied
Opus Cactus
Prof Maryna Boshoff from the Department of Sustainable Food Systems and Development, Lerato Mamabolo (UFS graduate, now employed at OPUS Cactus), and Sotirios Pilafidis, Head of Research and Development at OPUS Cactus, at the XI International Congress on Cacti as Food, Fodder and Other Uses, hosted by the FAO-ICARDA CactusNet in Tenerife, Canary Islands.

The University of the Free State (UFS) has formalised a collaboration with OPUS Cactus, a pioneering biotech company focused on sustainable cactus-based farming and biorefineries in semi-arid regions. This partnership builds on OPUS Cactus’ expansion at the historic Waterkloof Research Station near Bloemfontein and combines the UFS’ academic expertise with industry innovation to promote climate-smart agriculture and economic development.

OPUS Cactus, led by Joeri van den Bovenkamp-Hofman, CEO, and Sotirios Pilafidis, Head of Research and Development (R&D), specialises in transforming marginal, non-arable land into productive, resource-efficient ecosystems by cultivating the drought-tolerant Opuntia cactus. This versatile biomass supports renewable bioenergy, animal feed, food production, fermentation feedstock, and sustainable biomaterials, while contributing to carbon capture and climate mitigation efforts.

“Our mission is to unlock the full potential of Opuntia biomass for sustainable bioenergy, food, and biomaterials, advancing regenerative agriculture and climate action,” says Van den Bovenkamp-Hofman. OPUS Cactus operates dual hubs: its headquarters and R&D lab in Groningen, the Netherlands, and the flagship 1 000-hectare Waterkloof Research Centre in the Free State. The Waterkloof facility serves as a commercial farm, research platform, and demonstration site for regenerative farming techniques.

The UFS collaboration involves multiple departments, including Sustainable Food Systems and Development, Soil, Crop and Climate Sciences, and Microbiology and Biochemistry. Profs Maryna Boshoff and Carlien Pohl-Albertyn, alongside Dr Gesine Coetzer, provide academic leadership in the partnership.

Prof Boshoff explains, “This industry-academia collaboration aims to develop innovative projects utilising cactus-based products. It builds on decades of cactus research at the UFS, enabling the translation of scientific knowledge into real-world impact through scale-up and commercialisation.”

 

Bridging academic research and commercial innovation to promote climate-smart agriculture

At the core of the partnership is the Waterkloof Research Centre, home to 42 spineless Burbank cactus pear cultivars. The facility acts as a ‘living laboratory’, integrating empirical research with commercial-scale farming. “Waterkloof now offers students and researchers access to operational infrastructure that cannot be replicated in conventional academic settings,” says Prof Boshoff.

Continuing projects at Waterkloof include biogas production through an anaerobic digester, regenerative agriculture practices such as cover cropping and reduced tillage, advanced plant biotechnology to breed superior cultivars, fermentation research for alternative proteins, and the development of novel fermented foods and sustainable biomaterials.

The collaboration also plays a critical role in conserving Opuntia genetic diversity and evaluating cultivars across South Africa’s varied agro-ecological zones. “Research done by UFS and ARC scientists on cultivar selection and cultivation is applied and scaled up through OPUS Cactus’ commercial operations,” Prof Boshoff adds.

This partnership provides valuable hands-on experience and career pathways for postgraduate students and young researchers. “We offer internships and employment opportunities, with several recent UFS graduates already joining our R&D team,” says Pilafidis. “We actively seek motivated graduates passionate about sustainable agriculture and bioengineering.”

By converting semi-arid landscapes into productive, carbon-sequestering ecosystems, the UFS-OPUS Cactus collaboration exemplifies how scientific innovation, entrepreneurship, and environmental stewardship can drive climate resilience, food security, and sustainable economic growth.

“OPUS Cactus is a win for the environment, communities, and business alike,” concludes Van den Bovenkamp-Hofman.

News Archive

Scientists discover a water reservoir beneath the Free State
2009-12-09

Dr Holger Sommer

The Mantle Research Group Bloemfontein (MRGB), under the leadership of Dr Holger Sommer, a senior lecturer in the Department of Geology at the University of the Free State (UFS), has discovered an enormous water reservoir 160 km beneath the Free State.

This discovery, according to Dr Sommer, is the first of its kind in South Africa after he had previously made a similar finding in Colorado, USA.

However, this water cannot be used for human consumption. “It is not frozen water; it is not molecular water; it is not fresh water; it is not salty water; it is OH – water which is sitting in the crystal lattice,” he said.

He said the reservoir was comparable in size to Lake Victoria in Tanzania.
The researchers collected eclogites from the Roberts Victor (Rovic) Mine close to the town of Boshof, south-west of the Free State, for their study.

“The Rovic eclogites are rocks which represent former oceanic crust transported into the earth’s interior by complex plate tectonic processes about 2.0 billion years ago,” explained Dr Sommer.

“These rocks were finally carried back to the earth’s surface by volcanic (kimberlite) eruptions around 130 million years ago. Eclogitic rocks are therefore a window into the Earth’s interior.”

The question from the beginning for all MRGB scientists was: Is there water inside these rocks in such depth, and if so, where is it located?

To answer this question, Dr Sommer and his research fellows separated single mineral grains from eclogite samples and prepared about 100 micrometer (0,1 mm) thick rock sections. Afterwards, specific particle accelerator (Synchrotron) measurements were carried out in the city of Karlsruhe in Germany.

“And indeed, the MRGB found water inside the studied rocks from the Roberts Victor Mine,” he said. “The water was located in defect structures in crystal lattices and along boundaries between single mineral grains.”

“The occurrence of water at such depth would give first evidence that all water of the oceans could be stored five to ten times in the earth’s mantle.”
The study was conducted about a year ago.
 

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@ufs.ac.za
4 December 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept