Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2025 | Story Martinette Brits | Photo Supplied
Opus Cactus
Prof Maryna Boshoff from the Department of Sustainable Food Systems and Development, Lerato Mamabolo (UFS graduate, now employed at OPUS Cactus), and Sotirios Pilafidis, Head of Research and Development at OPUS Cactus, at the XI International Congress on Cacti as Food, Fodder and Other Uses, hosted by the FAO-ICARDA CactusNet in Tenerife, Canary Islands.

The University of the Free State (UFS) has formalised a collaboration with OPUS Cactus, a pioneering biotech company focused on sustainable cactus-based farming and biorefineries in semi-arid regions. This partnership builds on OPUS Cactus’ expansion at the historic Waterkloof Research Station near Bloemfontein and combines the UFS’ academic expertise with industry innovation to promote climate-smart agriculture and economic development.

OPUS Cactus, led by Joeri van den Bovenkamp-Hofman, CEO, and Sotirios Pilafidis, Head of Research and Development (R&D), specialises in transforming marginal, non-arable land into productive, resource-efficient ecosystems by cultivating the drought-tolerant Opuntia cactus. This versatile biomass supports renewable bioenergy, animal feed, food production, fermentation feedstock, and sustainable biomaterials, while contributing to carbon capture and climate mitigation efforts.

“Our mission is to unlock the full potential of Opuntia biomass for sustainable bioenergy, food, and biomaterials, advancing regenerative agriculture and climate action,” says Van den Bovenkamp-Hofman. OPUS Cactus operates dual hubs: its headquarters and R&D lab in Groningen, the Netherlands, and the flagship 1 000-hectare Waterkloof Research Centre in the Free State. The Waterkloof facility serves as a commercial farm, research platform, and demonstration site for regenerative farming techniques.

The UFS collaboration involves multiple departments, including Sustainable Food Systems and Development, Soil, Crop and Climate Sciences, and Microbiology and Biochemistry. Profs Maryna Boshoff and Carlien Pohl-Albertyn, alongside Dr Gesine Coetzer, provide academic leadership in the partnership.

Prof Boshoff explains, “This industry-academia collaboration aims to develop innovative projects utilising cactus-based products. It builds on decades of cactus research at the UFS, enabling the translation of scientific knowledge into real-world impact through scale-up and commercialisation.”

 

Bridging academic research and commercial innovation to promote climate-smart agriculture

At the core of the partnership is the Waterkloof Research Centre, home to 42 spineless Burbank cactus pear cultivars. The facility acts as a ‘living laboratory’, integrating empirical research with commercial-scale farming. “Waterkloof now offers students and researchers access to operational infrastructure that cannot be replicated in conventional academic settings,” says Prof Boshoff.

Continuing projects at Waterkloof include biogas production through an anaerobic digester, regenerative agriculture practices such as cover cropping and reduced tillage, advanced plant biotechnology to breed superior cultivars, fermentation research for alternative proteins, and the development of novel fermented foods and sustainable biomaterials.

The collaboration also plays a critical role in conserving Opuntia genetic diversity and evaluating cultivars across South Africa’s varied agro-ecological zones. “Research done by UFS and ARC scientists on cultivar selection and cultivation is applied and scaled up through OPUS Cactus’ commercial operations,” Prof Boshoff adds.

This partnership provides valuable hands-on experience and career pathways for postgraduate students and young researchers. “We offer internships and employment opportunities, with several recent UFS graduates already joining our R&D team,” says Pilafidis. “We actively seek motivated graduates passionate about sustainable agriculture and bioengineering.”

By converting semi-arid landscapes into productive, carbon-sequestering ecosystems, the UFS-OPUS Cactus collaboration exemplifies how scientific innovation, entrepreneurship, and environmental stewardship can drive climate resilience, food security, and sustainable economic growth.

“OPUS Cactus is a win for the environment, communities, and business alike,” concludes Van den Bovenkamp-Hofman.

News Archive

Prof Tredoux turns theories regarding the formation of metals on its head
2013-09-17

 

Prof Marian Tredoux
17 September 2013

The latest research conducted by Prof Marian Tredoux of the Department of Geology, in collaboration with her research assistant Bianca Kennedy and their colleagues in Germany, placed established theories regarding how minerals of the platinum-group of elements are formed, under close scrutiny.

The article on this research of which Prof Tredoux is a co-author – ‘Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts’ – was published in Nature Communications on 6 September 2013. It is an online journal for research of the highest quality in the fields of biological, physical and chemical sciences.

This study found that atoms of platinum and arsenic create nanoclusters, long before the mineral sperrylite can crystallise. Thus, the platinum does not occur as a primary sulphur compound. The research was conducted at the Steinmann Institute of the University of Bonn, Germany, as well as here in Bloemfontein.

Monetary support from Inkaba yeAfrica – a German-South African multidisciplinary and intercultural Earth Science collaborative of the National Research Foundation (NRF) – made this research possible. Studies are now also being conducted on other metals in the precious metal group, specifically palladium, rhodium and ruthenium.

The discovery of the nanoclusters and the combination with arsenic can have far-reaching consequences for the platinum mine industry, if it can be utilised to recover a greater amount of platinum ore and therefore less wastage ending up in mine dumps. This will signify optimal mining of a scarce and valuable metal, one of South Africa’s most important export products.

For Prof Tredoux, the research results also prove thoughts she already had some twenty years ago around the forming of platinum minerals. “Researchers laughed in my face, but the evidence had to wait for the development of technology to prove it.” Young researchers were very excited at recent congresses about the findings, since the new models can bring new insights.

“Chemistry researchers have been talking about platinum element clusters in watery environments for quite a while, but it was thought that these would not appear in magmas (molten rock) due to the high temperatures (>1 000 degrees celsius).”

Prof Tredoux has already delivered lectures at congresses in Scotland, Hungary, Sweden and Italy on this research.

Read the article at: http://www.nature.com/ncomms/2013/130906/ncomms3405/full/ncomms3405.html

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept