Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2025 | Story Martinette Brits | Photo Supplied
Opus Cactus
Prof Maryna Boshoff from the Department of Sustainable Food Systems and Development, Lerato Mamabolo (UFS graduate, now employed at OPUS Cactus), and Sotirios Pilafidis, Head of Research and Development at OPUS Cactus, at the XI International Congress on Cacti as Food, Fodder and Other Uses, hosted by the FAO-ICARDA CactusNet in Tenerife, Canary Islands.

The University of the Free State (UFS) has formalised a collaboration with OPUS Cactus, a pioneering biotech company focused on sustainable cactus-based farming and biorefineries in semi-arid regions. This partnership builds on OPUS Cactus’ expansion at the historic Waterkloof Research Station near Bloemfontein and combines the UFS’ academic expertise with industry innovation to promote climate-smart agriculture and economic development.

OPUS Cactus, led by Joeri van den Bovenkamp-Hofman, CEO, and Sotirios Pilafidis, Head of Research and Development (R&D), specialises in transforming marginal, non-arable land into productive, resource-efficient ecosystems by cultivating the drought-tolerant Opuntia cactus. This versatile biomass supports renewable bioenergy, animal feed, food production, fermentation feedstock, and sustainable biomaterials, while contributing to carbon capture and climate mitigation efforts.

“Our mission is to unlock the full potential of Opuntia biomass for sustainable bioenergy, food, and biomaterials, advancing regenerative agriculture and climate action,” says Van den Bovenkamp-Hofman. OPUS Cactus operates dual hubs: its headquarters and R&D lab in Groningen, the Netherlands, and the flagship 1 000-hectare Waterkloof Research Centre in the Free State. The Waterkloof facility serves as a commercial farm, research platform, and demonstration site for regenerative farming techniques.

The UFS collaboration involves multiple departments, including Sustainable Food Systems and Development, Soil, Crop and Climate Sciences, and Microbiology and Biochemistry. Profs Maryna Boshoff and Carlien Pohl-Albertyn, alongside Dr Gesine Coetzer, provide academic leadership in the partnership.

Prof Boshoff explains, “This industry-academia collaboration aims to develop innovative projects utilising cactus-based products. It builds on decades of cactus research at the UFS, enabling the translation of scientific knowledge into real-world impact through scale-up and commercialisation.”

 

Bridging academic research and commercial innovation to promote climate-smart agriculture

At the core of the partnership is the Waterkloof Research Centre, home to 42 spineless Burbank cactus pear cultivars. The facility acts as a ‘living laboratory’, integrating empirical research with commercial-scale farming. “Waterkloof now offers students and researchers access to operational infrastructure that cannot be replicated in conventional academic settings,” says Prof Boshoff.

Continuing projects at Waterkloof include biogas production through an anaerobic digester, regenerative agriculture practices such as cover cropping and reduced tillage, advanced plant biotechnology to breed superior cultivars, fermentation research for alternative proteins, and the development of novel fermented foods and sustainable biomaterials.

The collaboration also plays a critical role in conserving Opuntia genetic diversity and evaluating cultivars across South Africa’s varied agro-ecological zones. “Research done by UFS and ARC scientists on cultivar selection and cultivation is applied and scaled up through OPUS Cactus’ commercial operations,” Prof Boshoff adds.

This partnership provides valuable hands-on experience and career pathways for postgraduate students and young researchers. “We offer internships and employment opportunities, with several recent UFS graduates already joining our R&D team,” says Pilafidis. “We actively seek motivated graduates passionate about sustainable agriculture and bioengineering.”

By converting semi-arid landscapes into productive, carbon-sequestering ecosystems, the UFS-OPUS Cactus collaboration exemplifies how scientific innovation, entrepreneurship, and environmental stewardship can drive climate resilience, food security, and sustainable economic growth.

“OPUS Cactus is a win for the environment, communities, and business alike,” concludes Van den Bovenkamp-Hofman.

News Archive

Renowned forensic scientist speaks at the UFS
2014-04-02


Forensic science is about the truth. At the presentation delivered by Dr David Klatzow, were, from the left: Tinus Viljoen, lecturer in Forensic Genetics, Dr Klatzow and Laura Heathfield, also a lecturer in Forensic Genetics.
Photo: Leonie Bolleurs 

It is necessary for more research to be done in the field of forensic science in South Africa. This is according to Dr David Klatzow, well-known forensic scientist, during a lecture delivered at the University of the Free State (UFS) last week.

The university is offering, for the first time this year, a BSc degree in Forensic Science in the Department of Genetics. This three-year degree is, among others, directed at people working for the South African Police Service on crime scenes and on criminal cases in forensic laboratories. Students can also study up to PhD level, specialising in various forensic fields.

There is no accredited forensic laboratory in South Africa. “It is time to look differently at forensic science, and to deliver research papers on the subject. In light of the manner in which science is applied, we have to look differently at everything,” Dr Klatzow said.

Dr Klatzow praised the university for its chemistry-based course. “Chemistry is a strong basis for forensic science,” he said.

A paradigm shift in terms of forensic science is needed. Micro scratches on bullets, fingerprints, DNA, bite marks – all of these are forensic evidence that in the past led to people being wrongfully hanged. This evidence is not necessarily the alpha and omega of forensic science today. DNA, which seems to be the golden rule, can produce problems in itself. Because a person leaves DNA in his fingerprint, it is possible that DNA is transferred from one crime scene to another by forensic experts dusting for fingerprints. According to Dr Klatzow, this is only one of the problems that could be experienced with DNA evidence.

“No single set of forensic evidence is 100% effective or without problems. Rather approach the crime scene through a combination of evidence, by collecting fingerprints, DNA, etc. It is also very important to look at the context in which the events happened.

“A person sees what he expects to see. This causes huge problems in terms of forensic science. For example, if a criminal fits the profile of the perpetrator, it doesn’t follow that this specific criminal is the culprit. It isn’t what we don’t know that gives us trouble, it’s what we know that isn’t so,” Dr Klatzow said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept