Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2025 | Story Martinette Brits | Photo Supplied
Opus Cactus
Prof Maryna Boshoff from the Department of Sustainable Food Systems and Development, Lerato Mamabolo (UFS graduate, now employed at OPUS Cactus), and Sotirios Pilafidis, Head of Research and Development at OPUS Cactus, at the XI International Congress on Cacti as Food, Fodder and Other Uses, hosted by the FAO-ICARDA CactusNet in Tenerife, Canary Islands.

The University of the Free State (UFS) has formalised a collaboration with OPUS Cactus, a pioneering biotech company focused on sustainable cactus-based farming and biorefineries in semi-arid regions. This partnership builds on OPUS Cactus’ expansion at the historic Waterkloof Research Station near Bloemfontein and combines the UFS’ academic expertise with industry innovation to promote climate-smart agriculture and economic development.

OPUS Cactus, led by Joeri van den Bovenkamp-Hofman, CEO, and Sotirios Pilafidis, Head of Research and Development (R&D), specialises in transforming marginal, non-arable land into productive, resource-efficient ecosystems by cultivating the drought-tolerant Opuntia cactus. This versatile biomass supports renewable bioenergy, animal feed, food production, fermentation feedstock, and sustainable biomaterials, while contributing to carbon capture and climate mitigation efforts.

“Our mission is to unlock the full potential of Opuntia biomass for sustainable bioenergy, food, and biomaterials, advancing regenerative agriculture and climate action,” says Van den Bovenkamp-Hofman. OPUS Cactus operates dual hubs: its headquarters and R&D lab in Groningen, the Netherlands, and the flagship 1 000-hectare Waterkloof Research Centre in the Free State. The Waterkloof facility serves as a commercial farm, research platform, and demonstration site for regenerative farming techniques.

The UFS collaboration involves multiple departments, including Sustainable Food Systems and Development, Soil, Crop and Climate Sciences, and Microbiology and Biochemistry. Profs Maryna Boshoff and Carlien Pohl-Albertyn, alongside Dr Gesine Coetzer, provide academic leadership in the partnership.

Prof Boshoff explains, “This industry-academia collaboration aims to develop innovative projects utilising cactus-based products. It builds on decades of cactus research at the UFS, enabling the translation of scientific knowledge into real-world impact through scale-up and commercialisation.”

 

Bridging academic research and commercial innovation to promote climate-smart agriculture

At the core of the partnership is the Waterkloof Research Centre, home to 42 spineless Burbank cactus pear cultivars. The facility acts as a ‘living laboratory’, integrating empirical research with commercial-scale farming. “Waterkloof now offers students and researchers access to operational infrastructure that cannot be replicated in conventional academic settings,” says Prof Boshoff.

Continuing projects at Waterkloof include biogas production through an anaerobic digester, regenerative agriculture practices such as cover cropping and reduced tillage, advanced plant biotechnology to breed superior cultivars, fermentation research for alternative proteins, and the development of novel fermented foods and sustainable biomaterials.

The collaboration also plays a critical role in conserving Opuntia genetic diversity and evaluating cultivars across South Africa’s varied agro-ecological zones. “Research done by UFS and ARC scientists on cultivar selection and cultivation is applied and scaled up through OPUS Cactus’ commercial operations,” Prof Boshoff adds.

This partnership provides valuable hands-on experience and career pathways for postgraduate students and young researchers. “We offer internships and employment opportunities, with several recent UFS graduates already joining our R&D team,” says Pilafidis. “We actively seek motivated graduates passionate about sustainable agriculture and bioengineering.”

By converting semi-arid landscapes into productive, carbon-sequestering ecosystems, the UFS-OPUS Cactus collaboration exemplifies how scientific innovation, entrepreneurship, and environmental stewardship can drive climate resilience, food security, and sustainable economic growth.

“OPUS Cactus is a win for the environment, communities, and business alike,” concludes Van den Bovenkamp-Hofman.

News Archive

Medical team performs first hybrid procedure in the Free State
2014-12-08

The days when a heart operation meant hours in an operating theatre, with weeks and even months of convalescing, will soon be something of the past.

A team of cardiologists from the University of the Free State’s (UFS) Faculty of Health Sciences once again made medical history when they performed the first hybrid procedure in the Free State.

The Department of Paediatric Cardiology, in conjunction with the Department of Cardiothoracic Surgery, performed this very successful procedure on a 45-year-old woman from Kuruman.

During the procedure of 30 minutes, the patient’s thorax was opened up through a mini thoracotomy to operate on the beating heart.

“The patient received an artificial valve in 2011. Due to infection, a giant aneurism developed from the left ventricle, next to the aorta. Surgery would pose a very high risk to the patient. Furthermore, her health was such that it would contribute to problems during open-heart surgery,” explains Prof Stephen Brown, Head of the UFS’s Department of Paediatric Cardiology.

“After the heart was opened up through a mini thoracotomy, the paediatric cardiologists performed a direct puncture with a needle to the left ventricle cavity. A Special sheath was then placed in the left ventricle to bypass the catheters. Aided by highly advanced three-dimensional echocardiography and dihedral X-ray guidance, the opening to the aneurism, located directly below the artificial aorta valve, was identified and the aneurism cannulated.”
 
During the operation, a special coil, called a Nester Retractor, was used for the first time on a patient in South Africa to obtain stasis of extravasation and ensure the stability of devices in the aneurism.

“This is highly advanced and specialist work, as we had to make sure that the aneurism doesn’t rupture during manipulation and the devices had to be positioned in such a way that it doesn’t cause obstruction in valve function or the coronary artery. The surgical team was ready all the time to switch the patient to the heart-lung machine should something go wrong, but the procedure was very successful and the patient was discharged after a few days.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept