Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2025 | Story Vuyelwa Nkoi | Photo Supplied
SDG Challenge
Interdisciplinary innovators from the Faculty of Natural and Agricultural Sciences – Njabulo Dlamini, Vuyelwa Nkoi, Hanipher Mili, Gugulethu Nhlapho, and Almaré de Bruin – winners of the 2025 SDG Challenge South Africa.

A dynamic team of students from the University of the Free State (UFS) has secured first place in the 2025 SDG Challenge South Africa – a prestigious competition that unites students and industry partners in addressing real-world issues aligned with the United Nations Sustainable Development Goals (UNSDGs). This outstanding achievement celebrates the creativity, collaboration, and strong commitment of UFS students to building a more sustainable and inclusive future.

Hosted by Soapbox South Africa, the SDG Challenge pairs student teams with industry experts to co-design practical solutions to pressing societal needs. Competing against leading institutions – including the University of Pretoria, University of Zululand, University of Johannesburg, the University of the Witwatersrand, and the University of KwaZulu-Natal – the UFS students distinguished themselves with a community-driven, scalable approach.

The winning UFS team consisted of Almaré de Bruin, Njabulo Dlamini, and Vuyelwa Nkoi from the Department of Sustainable Food Systems and Development, as well as Hanipher Mili and Gugulethu Nhlapho from the Department of Agricultural Economics – reflecting a powerful interdisciplinary collaboration.

 

Innovative Agrihub solution for community sustainability

Partnering with Ivanplats mine, the students developed a holistic solution to reduce food insecurity and promote environmental sustainability in resource-limited communities in Mokopane.

Their innovative project, built around a WhatsApp-based Agrihub, enables agricultural knowledge sharing, market access, and community engagement. The solution included the following:

  • A WhatsApp Agrihub platform for real-time agricultural support
  • An Implementation Manual for community rollout
  • A low-cost irrigation prototype designed for small-scale gardens
  • A scalable model for replication in other communities
  • A final showcase presentation demonstrating its feasibility and long-term impact

To reduce surplus produce waste and create entrepreneurial opportunities, the team also produced value-added products – including pickled beetroot and carrot preserves – in the UFS food lab.

The Agrihub doubles as a community marketplace where residents can sell both fresh produce and recyclables. A R20 subscription fee supports local facilitators and content creators, promoting sustainability and community ownership.

Their project advances multiple UNSDGs, notably Zero Hunger, Responsible Consumption and Production, Climate Action, and Decent Work and Economic Growth.

“This victory is a testament to the calibre of our students and the mentorship they receive,” says Prof JW Swanepoel from the Department of Sustainable Food Systems and Development. “Their innovative thinking and commitment to real-world impact reflect the values of the University of the Free State.”

The UFS team’s success not only underscores their potential as emerging leaders in sustainability, but it also affirms the university’s growing role in driving development and resilience across African communities.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept