Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 November 2025 | Story Vuyelwa Nkoi | Photo Supplied
SDG Challenge
Interdisciplinary innovators from the Faculty of Natural and Agricultural Sciences – Njabulo Dlamini, Vuyelwa Nkoi, Hanipher Mili, Gugulethu Nhlapho, and Almaré de Bruin – winners of the 2025 SDG Challenge South Africa.

A dynamic team of students from the University of the Free State (UFS) has secured first place in the 2025 SDG Challenge South Africa – a prestigious competition that unites students and industry partners in addressing real-world issues aligned with the United Nations Sustainable Development Goals (UNSDGs). This outstanding achievement celebrates the creativity, collaboration, and strong commitment of UFS students to building a more sustainable and inclusive future.

Hosted by Soapbox South Africa, the SDG Challenge pairs student teams with industry experts to co-design practical solutions to pressing societal needs. Competing against leading institutions – including the University of Pretoria, University of Zululand, University of Johannesburg, the University of the Witwatersrand, and the University of KwaZulu-Natal – the UFS students distinguished themselves with a community-driven, scalable approach.

The winning UFS team consisted of Almaré de Bruin, Njabulo Dlamini, and Vuyelwa Nkoi from the Department of Sustainable Food Systems and Development, as well as Hanipher Mili and Gugulethu Nhlapho from the Department of Agricultural Economics – reflecting a powerful interdisciplinary collaboration.

 

Innovative Agrihub solution for community sustainability

Partnering with Ivanplats mine, the students developed a holistic solution to reduce food insecurity and promote environmental sustainability in resource-limited communities in Mokopane.

Their innovative project, built around a WhatsApp-based Agrihub, enables agricultural knowledge sharing, market access, and community engagement. The solution included the following:

  • A WhatsApp Agrihub platform for real-time agricultural support
  • An Implementation Manual for community rollout
  • A low-cost irrigation prototype designed for small-scale gardens
  • A scalable model for replication in other communities
  • A final showcase presentation demonstrating its feasibility and long-term impact

To reduce surplus produce waste and create entrepreneurial opportunities, the team also produced value-added products – including pickled beetroot and carrot preserves – in the UFS food lab.

The Agrihub doubles as a community marketplace where residents can sell both fresh produce and recyclables. A R20 subscription fee supports local facilitators and content creators, promoting sustainability and community ownership.

Their project advances multiple UNSDGs, notably Zero Hunger, Responsible Consumption and Production, Climate Action, and Decent Work and Economic Growth.

“This victory is a testament to the calibre of our students and the mentorship they receive,” says Prof JW Swanepoel from the Department of Sustainable Food Systems and Development. “Their innovative thinking and commitment to real-world impact reflect the values of the University of the Free State.”

The UFS team’s success not only underscores their potential as emerging leaders in sustainability, but it also affirms the university’s growing role in driving development and resilience across African communities.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept