Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 October 2025 | Story Onthatile Tikoe | Photo Supplied
Residence Committee
From left: Nhlanhla Simelane, outgoing Prime of House Imperium and incoming Prime of Primes for West College; Matiya Mokhoyoa, outgoing Vice-Prime and incoming Prime of Vishuis; Morongoa Tlhoaele, outgoing Vice-Prime of House Imperium and incoming Prime of House Imperium; and Genius Bhila, outgoing Prime of House Imperium. The group participated in the 2024/25 Year-End Conversation talks, reflecting on a year of service, growth, and sustainable impact within the student community.

As the 2024/25 Residence Committees conclude their term, the annual Year-End Conversation talks, hosted by the Department of Housing and Residence Affairs, provided a platform for reflection, recognition, and renewal. The discussions captured the essence of student leadership at the University of the Free State (UFS): a commitment to service, growth, and lasting societal impact.

According to Dr Nokuthula Tlalajoe-Mokhatla, Academic Head and Senior Lecturer in the Division of Student Learning and Development, and Faculty Coordinator for the Faculty Student Council, the year has been one defined by meaningful collaboration. “The best thing that happened this year was when the leadership of House Abraham Fischer-Boetapele extended goodwill to the leadership of House Imperium through intentional outreaches and collaborations,” she shared. “It was a beautiful relationship that words cannot even begin to explain.”

 

Building impact through collaboration

The partnership between the two residences exemplifies the spirit of cooperation that underpins student leadership at the UFS. Their initiatives included impactful community projects, such as hosting cooking demonstrations to create awareness around high salt intake and engaging in plans to host a fun run promoting prostate cancer awareness.

“These projects go beyond fulfilling excellence criteria,” Dr Tlalajoe-Mokhatla explained. “They speak to taking up a responsibility that is bigger than us. Their impact is worth pursuing because they foster a sense of community not only among students but also within society.”

The projects reflect the UFS’s commitment to engaged scholarship, where learning transcends the classroom and contributes to real-world change.

 

Sustainability and long-term vision

To ensure sustainability, the residences have established collaborations with Prof Matthew Benedict from the Department of Family Medicine and Dr Lucia Meko, Head of the Department of Nutrition and Dietetics, who both play vital roles in strengthening the continuity of these health-focused initiatives.

Dr Tlalajoe-Mokhatla also highlighted the valuable contribution of Benedict Mochesela, Residence Head of the Vishuis Residence Council (RC) team. “Credit should be given to Mochesela, as all of the work by the Vishuis RC team happened under his guidance,” she said. “The legacy projects serve as a foundation for continuity. By expanding our partnerships, we ensure that these initiatives grow on a larger scale and remain relevant.”

 

Leadership and lifelong learning

Reflecting on the personal and professional growth of residence leaders, Dr Tlalajoe-Mokhatla highlighted communication, teamwork, and time management as the most notable developments. “Leadership goes beyond showing up for the job you are assigned to do,” she said. “It is a platform to showcase passion, engage communities, and contribute meaningfully to society.”

As new residence councils prepare to take up the mantle, her message is one of openness and adaptability. “Being rigid in your way of doing things stunts growth,” she concluded. “Through collaboration, agility, and kindness, anything is possible.”

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept