Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 October 2025 | Story Onthatile Tikoe | Photo Supplied
Residence Committee
From left: Nhlanhla Simelane, outgoing Prime of House Imperium and incoming Prime of Primes for West College; Matiya Mokhoyoa, outgoing Vice-Prime and incoming Prime of Vishuis; Morongoa Tlhoaele, outgoing Vice-Prime of House Imperium and incoming Prime of House Imperium; and Genius Bhila, outgoing Prime of House Imperium. The group participated in the 2024/25 Year-End Conversation talks, reflecting on a year of service, growth, and sustainable impact within the student community.

As the 2024/25 Residence Committees conclude their term, the annual Year-End Conversation talks, hosted by the Department of Housing and Residence Affairs, provided a platform for reflection, recognition, and renewal. The discussions captured the essence of student leadership at the University of the Free State (UFS): a commitment to service, growth, and lasting societal impact.

According to Dr Nokuthula Tlalajoe-Mokhatla, Academic Head and Senior Lecturer in the Division of Student Learning and Development, and Faculty Coordinator for the Faculty Student Council, the year has been one defined by meaningful collaboration. “The best thing that happened this year was when the leadership of House Abraham Fischer-Boetapele extended goodwill to the leadership of House Imperium through intentional outreaches and collaborations,” she shared. “It was a beautiful relationship that words cannot even begin to explain.”

 

Building impact through collaboration

The partnership between the two residences exemplifies the spirit of cooperation that underpins student leadership at the UFS. Their initiatives included impactful community projects, such as hosting cooking demonstrations to create awareness around high salt intake and engaging in plans to host a fun run promoting prostate cancer awareness.

“These projects go beyond fulfilling excellence criteria,” Dr Tlalajoe-Mokhatla explained. “They speak to taking up a responsibility that is bigger than us. Their impact is worth pursuing because they foster a sense of community not only among students but also within society.”

The projects reflect the UFS’s commitment to engaged scholarship, where learning transcends the classroom and contributes to real-world change.

 

Sustainability and long-term vision

To ensure sustainability, the residences have established collaborations with Prof Matthew Benedict from the Department of Family Medicine and Dr Lucia Meko, Head of the Department of Nutrition and Dietetics, who both play vital roles in strengthening the continuity of these health-focused initiatives.

Dr Tlalajoe-Mokhatla also highlighted the valuable contribution of Benedict Mochesela, Residence Head of the Vishuis Residence Council (RC) team. “Credit should be given to Mochesela, as all of the work by the Vishuis RC team happened under his guidance,” she said. “The legacy projects serve as a foundation for continuity. By expanding our partnerships, we ensure that these initiatives grow on a larger scale and remain relevant.”

 

Leadership and lifelong learning

Reflecting on the personal and professional growth of residence leaders, Dr Tlalajoe-Mokhatla highlighted communication, teamwork, and time management as the most notable developments. “Leadership goes beyond showing up for the job you are assigned to do,” she said. “It is a platform to showcase passion, engage communities, and contribute meaningfully to society.”

As new residence councils prepare to take up the mantle, her message is one of openness and adaptability. “Being rigid in your way of doing things stunts growth,” she concluded. “Through collaboration, agility, and kindness, anything is possible.”

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept