Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 October 2025 | Story Onthatile Tikoe | Photo Supplied
Residence Committee
From left: Nhlanhla Simelane, outgoing Prime of House Imperium and incoming Prime of Primes for West College; Matiya Mokhoyoa, outgoing Vice-Prime and incoming Prime of Vishuis; Morongoa Tlhoaele, outgoing Vice-Prime of House Imperium and incoming Prime of House Imperium; and Genius Bhila, outgoing Prime of House Imperium. The group participated in the 2024/25 Year-End Conversation talks, reflecting on a year of service, growth, and sustainable impact within the student community.

As the 2024/25 Residence Committees conclude their term, the annual Year-End Conversation talks, hosted by the Department of Housing and Residence Affairs, provided a platform for reflection, recognition, and renewal. The discussions captured the essence of student leadership at the University of the Free State (UFS): a commitment to service, growth, and lasting societal impact.

According to Dr Nokuthula Tlalajoe-Mokhatla, Academic Head and Senior Lecturer in the Division of Student Learning and Development, and Faculty Coordinator for the Faculty Student Council, the year has been one defined by meaningful collaboration. “The best thing that happened this year was when the leadership of House Abraham Fischer-Boetapele extended goodwill to the leadership of House Imperium through intentional outreaches and collaborations,” she shared. “It was a beautiful relationship that words cannot even begin to explain.”

 

Building impact through collaboration

The partnership between the two residences exemplifies the spirit of cooperation that underpins student leadership at the UFS. Their initiatives included impactful community projects, such as hosting cooking demonstrations to create awareness around high salt intake and engaging in plans to host a fun run promoting prostate cancer awareness.

“These projects go beyond fulfilling excellence criteria,” Dr Tlalajoe-Mokhatla explained. “They speak to taking up a responsibility that is bigger than us. Their impact is worth pursuing because they foster a sense of community not only among students but also within society.”

The projects reflect the UFS’s commitment to engaged scholarship, where learning transcends the classroom and contributes to real-world change.

 

Sustainability and long-term vision

To ensure sustainability, the residences have established collaborations with Prof Matthew Benedict from the Department of Family Medicine and Dr Lucia Meko, Head of the Department of Nutrition and Dietetics, who both play vital roles in strengthening the continuity of these health-focused initiatives.

Dr Tlalajoe-Mokhatla also highlighted the valuable contribution of Benedict Mochesela, Residence Head of the Vishuis Residence Council (RC) team. “Credit should be given to Mochesela, as all of the work by the Vishuis RC team happened under his guidance,” she said. “The legacy projects serve as a foundation for continuity. By expanding our partnerships, we ensure that these initiatives grow on a larger scale and remain relevant.”

 

Leadership and lifelong learning

Reflecting on the personal and professional growth of residence leaders, Dr Tlalajoe-Mokhatla highlighted communication, teamwork, and time management as the most notable developments. “Leadership goes beyond showing up for the job you are assigned to do,” she said. “It is a platform to showcase passion, engage communities, and contribute meaningfully to society.”

As new residence councils prepare to take up the mantle, her message is one of openness and adaptability. “Being rigid in your way of doing things stunts growth,” she concluded. “Through collaboration, agility, and kindness, anything is possible.”

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept