Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 October 2025 | Story Leonie Bolleurs | Photo Supplied
Giraffe Research Centre
The giraffe research programme and infrastructure facility at Amanzi Private Game Reserve marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science.

The University of the Free State (UFS) is taking wildlife research to new heights. On Wednesday 29 October 2025, the university will officially launch the giraffe research programme and infrastructure facility at the Amanzi Private Game Reserve near Brandfort – a first-of-its-kind in the world, dedicated to advancing local and international scientific collaboration in the study and conservation of giraffes.

The launch marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science. Over the past decade, a team of researchers, led by Prof Francois Deacon from the Department of Animal Science, has made significant contributions to understanding giraffe behaviour, physiology, and ecology. Building on pioneering work in reproductive technologies, endocrinology, anatomy, and disease, the new infrastructure combines on-site research laboratories with spacious, stress-free habitats. In this hands-on environment, veterinarians, scientists, and students can work closely with giraffes while promoting their welfare and supporting both local and international research projects.

Over the past seven years, his team has conducted 254 successful sedations and captures, carefully building the expertise needed for the next delicate step: the first embryo transfer in wild giraffes.

“This dedicated research facility will provide a safe and controlled environment where the world’s first giraffe embryo can develop and grow, and where we can collaborate to produce the science needed to turn the extinction of the giraffe around,” he explains. “The general public may not see the results immediately, but 20 years from now, what we are doing today will be vital in creating a biobank of viable giraffe embryos and calves that can be used in surrogate animals, supporting sustainable conservation practices for future generations.”

This programme will allow researchers to expand their understanding of the world’s tallest land mammal in ways that were not possible before. “From conducting sedation and sample collection to pioneering reproductive techniques such as semen preservation and embryo transfer, the facility provides an environment where we can study, among others, giraffe genetics, reproductive biology, and physiology; knowledge that is important for their conservation and survival,” says Prof Deacon. 

About 12 departments at the UFS are already involved in the research project in one way or another. This includes from the Department of Animal Science to the Departments of Zoology and Entomology, as well as Chemistry and even Information and Communication and Technology Services, which contributes to 3D-modelling, software, and monitoring of the animals. 

The project also offers opportunities for collaboration with conservation organisations and universities worldwide, positioning the UFS as a leading hub for giraffe and large-mammal research in Africa. Current partners who share Prof Deacon’s vision for giraffe conservation on the African continent include Save the Giraffes (a US-based NGO), Absolute Genetics, Ramsem, and the Kroonstad Animal Hospital.

Despite their towering presence on the African continent, giraffes are quietly disappearing. The International Union for Conservation of Nature (IUCN) lists them as Vulnerable, with populations declining by more than 40% over the past three decades. Today, fewer than 100 000 remain in the wild – a sobering reminder that their future is far from secure and that research excellence like this is key to ensure their survival.

“We have all the technology and all the expertise to make a change. Now is the time to bring about this change to secure the future of giraffes on this continent,” Prof Deacon concludes, emphasising the UFS’ commitment to sustainability, care, and conservation.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept