Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 October 2025 | Story Leonie Bolleurs | Photo Supplied
Giraffe Research Centre
The giraffe research programme and infrastructure facility at Amanzi Private Game Reserve marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science.

The University of the Free State (UFS) is taking wildlife research to new heights. On Wednesday 29 October 2025, the university will officially launch the giraffe research programme and infrastructure facility at the Amanzi Private Game Reserve near Brandfort – a first-of-its-kind in the world, dedicated to advancing local and international scientific collaboration in the study and conservation of giraffes.

The launch marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science. Over the past decade, a team of researchers, led by Prof Francois Deacon from the Department of Animal Science, has made significant contributions to understanding giraffe behaviour, physiology, and ecology. Building on pioneering work in reproductive technologies, endocrinology, anatomy, and disease, the new infrastructure combines on-site research laboratories with spacious, stress-free habitats. In this hands-on environment, veterinarians, scientists, and students can work closely with giraffes while promoting their welfare and supporting both local and international research projects.

Over the past seven years, his team has conducted 254 successful sedations and captures, carefully building the expertise needed for the next delicate step: the first embryo transfer in wild giraffes.

“This dedicated research facility will provide a safe and controlled environment where the world’s first giraffe embryo can develop and grow, and where we can collaborate to produce the science needed to turn the extinction of the giraffe around,” he explains. “The general public may not see the results immediately, but 20 years from now, what we are doing today will be vital in creating a biobank of viable giraffe embryos and calves that can be used in surrogate animals, supporting sustainable conservation practices for future generations.”

This programme will allow researchers to expand their understanding of the world’s tallest land mammal in ways that were not possible before. “From conducting sedation and sample collection to pioneering reproductive techniques such as semen preservation and embryo transfer, the facility provides an environment where we can study, among others, giraffe genetics, reproductive biology, and physiology; knowledge that is important for their conservation and survival,” says Prof Deacon. 

About 12 departments at the UFS are already involved in the research project in one way or another. This includes from the Department of Animal Science to the Departments of Zoology and Entomology, as well as Chemistry and even Information and Communication and Technology Services, which contributes to 3D-modelling, software, and monitoring of the animals. 

The project also offers opportunities for collaboration with conservation organisations and universities worldwide, positioning the UFS as a leading hub for giraffe and large-mammal research in Africa. Current partners who share Prof Deacon’s vision for giraffe conservation on the African continent include Save the Giraffes (a US-based NGO), Absolute Genetics, Ramsem, and the Kroonstad Animal Hospital.

Despite their towering presence on the African continent, giraffes are quietly disappearing. The International Union for Conservation of Nature (IUCN) lists them as Vulnerable, with populations declining by more than 40% over the past three decades. Today, fewer than 100 000 remain in the wild – a sobering reminder that their future is far from secure and that research excellence like this is key to ensure their survival.

“We have all the technology and all the expertise to make a change. Now is the time to bring about this change to secure the future of giraffes on this continent,” Prof Deacon concludes, emphasising the UFS’ commitment to sustainability, care, and conservation.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept