Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 October 2025 | Story Leonie Bolleurs | Photo Supplied
Giraffe Research Centre
The giraffe research programme and infrastructure facility at Amanzi Private Game Reserve marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science.

The University of the Free State (UFS) is taking wildlife research to new heights. On Wednesday 29 October 2025, the university will officially launch the giraffe research programme and infrastructure facility at the Amanzi Private Game Reserve near Brandfort – a first-of-its-kind in the world, dedicated to advancing local and international scientific collaboration in the study and conservation of giraffes.

The launch marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science. Over the past decade, a team of researchers, led by Prof Francois Deacon from the Department of Animal Science, has made significant contributions to understanding giraffe behaviour, physiology, and ecology. Building on pioneering work in reproductive technologies, endocrinology, anatomy, and disease, the new infrastructure combines on-site research laboratories with spacious, stress-free habitats. In this hands-on environment, veterinarians, scientists, and students can work closely with giraffes while promoting their welfare and supporting both local and international research projects.

Over the past seven years, his team has conducted 254 successful sedations and captures, carefully building the expertise needed for the next delicate step: the first embryo transfer in wild giraffes.

“This dedicated research facility will provide a safe and controlled environment where the world’s first giraffe embryo can develop and grow, and where we can collaborate to produce the science needed to turn the extinction of the giraffe around,” he explains. “The general public may not see the results immediately, but 20 years from now, what we are doing today will be vital in creating a biobank of viable giraffe embryos and calves that can be used in surrogate animals, supporting sustainable conservation practices for future generations.”

This programme will allow researchers to expand their understanding of the world’s tallest land mammal in ways that were not possible before. “From conducting sedation and sample collection to pioneering reproductive techniques such as semen preservation and embryo transfer, the facility provides an environment where we can study, among others, giraffe genetics, reproductive biology, and physiology; knowledge that is important for their conservation and survival,” says Prof Deacon. 

About 12 departments at the UFS are already involved in the research project in one way or another. This includes from the Department of Animal Science to the Departments of Zoology and Entomology, as well as Chemistry and even Information and Communication and Technology Services, which contributes to 3D-modelling, software, and monitoring of the animals. 

The project also offers opportunities for collaboration with conservation organisations and universities worldwide, positioning the UFS as a leading hub for giraffe and large-mammal research in Africa. Current partners who share Prof Deacon’s vision for giraffe conservation on the African continent include Save the Giraffes (a US-based NGO), Absolute Genetics, Ramsem, and the Kroonstad Animal Hospital.

Despite their towering presence on the African continent, giraffes are quietly disappearing. The International Union for Conservation of Nature (IUCN) lists them as Vulnerable, with populations declining by more than 40% over the past three decades. Today, fewer than 100 000 remain in the wild – a sobering reminder that their future is far from secure and that research excellence like this is key to ensure their survival.

“We have all the technology and all the expertise to make a change. Now is the time to bring about this change to secure the future of giraffes on this continent,” Prof Deacon concludes, emphasising the UFS’ commitment to sustainability, care, and conservation.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept