Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 October 2025 | Story Leonie Bolleurs | Photo Supplied
Giraffe Research Centre
The giraffe research programme and infrastructure facility at Amanzi Private Game Reserve marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science.

The University of the Free State (UFS) is taking wildlife research to new heights. On Wednesday 29 October 2025, the university will officially launch the giraffe research programme and infrastructure facility at the Amanzi Private Game Reserve near Brandfort – a first-of-its-kind in the world, dedicated to advancing local and international scientific collaboration in the study and conservation of giraffes.

The launch marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science. Over the past decade, a team of researchers, led by Prof Francois Deacon from the Department of Animal Science, has made significant contributions to understanding giraffe behaviour, physiology, and ecology. Building on pioneering work in reproductive technologies, endocrinology, anatomy, and disease, the new infrastructure combines on-site research laboratories with spacious, stress-free habitats. In this hands-on environment, veterinarians, scientists, and students can work closely with giraffes while promoting their welfare and supporting both local and international research projects.

Over the past seven years, his team has conducted 254 successful sedations and captures, carefully building the expertise needed for the next delicate step: the first embryo transfer in wild giraffes.

“This dedicated research facility will provide a safe and controlled environment where the world’s first giraffe embryo can develop and grow, and where we can collaborate to produce the science needed to turn the extinction of the giraffe around,” he explains. “The general public may not see the results immediately, but 20 years from now, what we are doing today will be vital in creating a biobank of viable giraffe embryos and calves that can be used in surrogate animals, supporting sustainable conservation practices for future generations.”

This programme will allow researchers to expand their understanding of the world’s tallest land mammal in ways that were not possible before. “From conducting sedation and sample collection to pioneering reproductive techniques such as semen preservation and embryo transfer, the facility provides an environment where we can study, among others, giraffe genetics, reproductive biology, and physiology; knowledge that is important for their conservation and survival,” says Prof Deacon. 

About 12 departments at the UFS are already involved in the research project in one way or another. This includes from the Department of Animal Science to the Departments of Zoology and Entomology, as well as Chemistry and even Information and Communication and Technology Services, which contributes to 3D-modelling, software, and monitoring of the animals. 

The project also offers opportunities for collaboration with conservation organisations and universities worldwide, positioning the UFS as a leading hub for giraffe and large-mammal research in Africa. Current partners who share Prof Deacon’s vision for giraffe conservation on the African continent include Save the Giraffes (a US-based NGO), Absolute Genetics, Ramsem, and the Kroonstad Animal Hospital.

Despite their towering presence on the African continent, giraffes are quietly disappearing. The International Union for Conservation of Nature (IUCN) lists them as Vulnerable, with populations declining by more than 40% over the past three decades. Today, fewer than 100 000 remain in the wild – a sobering reminder that their future is far from secure and that research excellence like this is key to ensure their survival.

“We have all the technology and all the expertise to make a change. Now is the time to bring about this change to secure the future of giraffes on this continent,” Prof Deacon concludes, emphasising the UFS’ commitment to sustainability, care, and conservation.

News Archive

Breeding of unique game requires a balance between conservation and sustainable use
2014-05-20

 

Game bred for qualities such as unconventional hair colour or horn quality, may on the long term have unexpected consequences for biodiversity and game farming.

This is according to the inaugural lecture of Prof Paul Grobler from the Department of Genetics at the University of the Free State (UFS).

Prof Grobler feels that the consequences of selective breeding should be examined carefully, as there is currently much speculation on the subject without sound scientific information to back it.

“At the moment, colour variation invokes much interest among game farmers and breeders. Unusual colour variants are already available in different game species. These unusual animals usually fetch much higher prices at auctions compared to prices for the ‘normal’ individuals of the species.”

Examples of these unusual variants are springbuck being bred in white, black or copper colours, the black-backed or ‘saddleback’ impala, and the gold-coloured and royal wildebeest.

A black-backed impala was recently sold for R5,7 million.

“Based on genetic theory, good reason exists why these practices need to be monitored, but one should also take care not to make the assumption that selective breeding will inevitably lead to problems,” warns Prof Grobler.

Grobler says that negative characteristics in a species can sometimes unwittingly be expressed during the selection process for a unique colour. “It is seen, for example, in purebred dogs where the breeding of a new race sometimes brings underlying genetic deviations in the species to the front.” He also believes that some of these animals may not be able to adapt to changing environmental conditions.

“However, one should also look at the positive side: because of the good demand for game, including unusual variants, there is much more game in South Africa today than in many decades. Balance should be found between the aims of conservation and the sustainable utilisation of game.”

Research at the UFS’s Department of Genetics is now trying to establish the genetic effects of intensive game breeding and predict the impact on biodiversity.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept