Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 October 2025 | Story Leonie Bolleurs | Photo Supplied
Giraffe Research Centre
The giraffe research programme and infrastructure facility at Amanzi Private Game Reserve marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science.

The University of the Free State (UFS) is taking wildlife research to new heights. On Wednesday 29 October 2025, the university will officially launch the giraffe research programme and infrastructure facility at the Amanzi Private Game Reserve near Brandfort – a first-of-its-kind in the world, dedicated to advancing local and international scientific collaboration in the study and conservation of giraffes.

The launch marks the next phase in a research journey that has already placed the UFS at the forefront of giraffe science. Over the past decade, a team of researchers, led by Prof Francois Deacon from the Department of Animal Science, has made significant contributions to understanding giraffe behaviour, physiology, and ecology. Building on pioneering work in reproductive technologies, endocrinology, anatomy, and disease, the new infrastructure combines on-site research laboratories with spacious, stress-free habitats. In this hands-on environment, veterinarians, scientists, and students can work closely with giraffes while promoting their welfare and supporting both local and international research projects.

Over the past seven years, his team has conducted 254 successful sedations and captures, carefully building the expertise needed for the next delicate step: the first embryo transfer in wild giraffes.

“This dedicated research facility will provide a safe and controlled environment where the world’s first giraffe embryo can develop and grow, and where we can collaborate to produce the science needed to turn the extinction of the giraffe around,” he explains. “The general public may not see the results immediately, but 20 years from now, what we are doing today will be vital in creating a biobank of viable giraffe embryos and calves that can be used in surrogate animals, supporting sustainable conservation practices for future generations.”

This programme will allow researchers to expand their understanding of the world’s tallest land mammal in ways that were not possible before. “From conducting sedation and sample collection to pioneering reproductive techniques such as semen preservation and embryo transfer, the facility provides an environment where we can study, among others, giraffe genetics, reproductive biology, and physiology; knowledge that is important for their conservation and survival,” says Prof Deacon. 

About 12 departments at the UFS are already involved in the research project in one way or another. This includes from the Department of Animal Science to the Departments of Zoology and Entomology, as well as Chemistry and even Information and Communication and Technology Services, which contributes to 3D-modelling, software, and monitoring of the animals. 

The project also offers opportunities for collaboration with conservation organisations and universities worldwide, positioning the UFS as a leading hub for giraffe and large-mammal research in Africa. Current partners who share Prof Deacon’s vision for giraffe conservation on the African continent include Save the Giraffes (a US-based NGO), Absolute Genetics, Ramsem, and the Kroonstad Animal Hospital.

Despite their towering presence on the African continent, giraffes are quietly disappearing. The International Union for Conservation of Nature (IUCN) lists them as Vulnerable, with populations declining by more than 40% over the past three decades. Today, fewer than 100 000 remain in the wild – a sobering reminder that their future is far from secure and that research excellence like this is key to ensure their survival.

“We have all the technology and all the expertise to make a change. Now is the time to bring about this change to secure the future of giraffes on this continent,” Prof Deacon concludes, emphasising the UFS’ commitment to sustainability, care, and conservation.

News Archive

Oxford professor unlocks secrets of DNA
2017-03-31

Description: Oxford professor unlocks secrets of DNA Tags: Oxford professor unlocks secrets of DNA

From left are: Dr Cristian Capelli, Associate Professor
of Human Evolution at Oxford University;
Dr Karen Ehlers, Senior Lecturer and Prof Paul Grobler,
both from the Department of Genetics at the UFS.
Photo: Siobhan Canavan

Many people are interested to know more about their history and origins, and with the help of genetics, it is possible to provide more information about one’s roots.

During a lecture at the Department of Genetics at the University of the Free State (UFS), Dr Cristian Capelli, Associate Professor of Human Evolution at Oxford University in the UK, addressed staff members and students on the history of our species.

Reconstructing the history of human population
With his research, titled: People on the move: population structure and gene-flow in Southern Africa, Dr Capelli looks at reconstructing the history of human populations, focusing mainly on how the different human populations are related, as well as how they exchange genes.

He said this research could be of great significance to the medical field too. “Knowing what the genetic make-up of individuals is, can give us some information about their susceptibility to diseases, or how they would react to a given medicine. Therefore, this knowledge can be used to inform health-related policies.”

Combining individual histories of multiple people
To understand this research more clearly, Dr Capelli explained it in terms of DNA and how every individual receives half of their DNA from their mother and half from their father just as their parents had received theirs from their parents. And so it goes from generation after generation. Each individual stores a part of their ancestors’ DNA which makes up the individual genetic history of each person.

“If we combine these individual histories by looking at the DNA of multiple people, we can identify the occurrences that are shared across individuals and therefore reconstruct the history of a population, and in the same way on a larger scale, the history of our own species, homo sapiens.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept