Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 October 2025 | Story André Damons | Photo André Damons
Nuclear Medicine
Smiling proudly are Dr Gerrit Engelbrecht, Head of the UFS Department of Nuclear Medicine, Dr Tebatso Tebeila, senior resident in the same department, and Prof Osayande Evbuomwan, Senior Lecturer and medical specialist in nuclear medicine in the Department of Nuclear Medicine, with the certificate indicating they are now a Clinical Theranostics Centre of Excellence.

The Department of Nuclear Medicine at the Universitas Academic Hospital (UAH) and the University of the Free State (UFS) have been certified as Clinical Theranostics Centers of Excellence from the International Centers for Precision Oncology Foundation (ICPO). The hospital now joins only two other centres in South Africa to achieve this prestigious recognition.

The certification followed a rigorous evaluation process by the ICPO Foundation, which assessed the department’s clinical standards, infrastructure, expertise, and commitment to advancing theranostics. The application and verification process was done by Dr Tebatso Tebeila, a senior resident at the department who has just passed her final exams. She was supported by Dr Gerrit Engelbrecht, Head of the UFS Department of Nuclear Medicine, in the process which included interviews with the ICPO accreditation and projects director Dr Marwa Hakkam. Dr Tebeila had also completed the ICPO short course in Radiomolecular Precision Oncology through the ICPO Academy of Theranostics.

The UAH Nuclear Medicine Department began theranostics activities about five years ago, particularly in neuroendocrine and prostate malignancies. Prof Osayande Evbuomwan, Senior Lecturer and medical specialist in nuclear medicine in the UFS Department of Nuclear Medicine, received training for this during his residency period and had completed a rigorous international training workshop organised by the International Atomic Energy Agency on theranostics, particularly in prostate cancer, neuroendocrine neoplasms and well differentiated thyroid cancer. Prof Evbuomwan passed all these training and skills down to the department. The certification was further strengthened by the installation of department’s new state-of-the-art digital PET/CT camera, placing it on par with similar academic departments in the country. The recognition was officially conferred during the ICPO Reception at the European Association of Nuclear Medicine Congress in Barcelona earlier this month.  

 

A milestone achievement

“Being granted this certification signifies international recognition of our hospital’s commitment to the highest clinical, academic, and ethical standards in theranostics. It confirms that our institution meets the global benchmarks for delivering precision oncology care that integrates diagnostics and therapy for personalised cancer management.

“For our department and the University of the Free State, this is a milestone achievement that highlights our leadership in nuclear medicine and molecular imaging. It strengthens our research and training capacity and also attracts residents who want to be trained in nuclear medicine. It also enhances collaboration with international partners and aligns with our mission to advance precision medicine in South Africa and beyond,” says Prof Evbuomwan.

Theranostics, he explains, is an aspect of nuclear medicine that involves the use of a tracer bound to a radioisotope that can specifically locate and image cancer cells with high precision, characterise them and determine how much radiation will get to them. Using the same tracer, but a different radioisotope for therapy, these cancer cells are targeted with high precision and destroyed. It could be so precise that it targets only the cancer, sparing most of the normal tissue and thus resulting in less serious side effects. It is an aspect of nuclear medicine that is bound to revolutionise cancer care.

Dr Gerrit Engelbrecht says as a department, they are honoured and deeply proud of this achievement as it reflects months of dedication, innovation, and teamwork. “It validates our commitment to excellence in improving patient care and academic advancement, and we are motivated to build on this success. We are also grateful to Dr Tebeila for her initiative, hard work, dedication and networking skills.

“We would like to thank the ICPO Foundation for this recognition and for its continued efforts to support theranostics in developing regions. We also acknowledge the hard work of our staff, and partners who made this possible. This milestone inspires us to continue driving innovation and equitable access to precision oncology in Bloemfontein, the Free State province and South Africa at large.”

 

Forefront of precision oncology 

According to Prof Evbuomwan, patients will also benefit from this certification as it translates to improved access to world-class, and evidence-based theranostic management. It means earlier diagnosis, more accurate therapy selection, and ultimately, better treatment outcomes and quality of life for those with some of these cancers. They strongly believe the patients in the Free State also deserve access to this management, as the world is now moving slowly into the era of personalised and precision medicine. The Universitas Academic Hospital is now among three centres in South Africa (Numeri in SBAH Pretoria and Umhlanga Molecular Imaging and Therapy Centre in Durban) to achieve this prestigious recognition, joining an international network of 46 centres, mostly located in low- and middle-income countries. This positions the UFS at the forefront of precision oncology on the African continent.

Prof Evbuomwan says they hope to use this new status to expand patient access to theranostic treatments, foster multidisciplinary collaborations within the Universitas academic circuit, and participate in global research initiatives through the ICPO Academy for Theranostics. Certifications like this, he continues, would also help to attract more staff and junior resident doctors to the facility. It will also help them train the next generation of nuclear medicine specialists and strengthen South Africa’s role in precision oncology. The ICPO will also offer direct assistance to the facility to achieve these objectives.

On her trip to the EANM Congress in Barcelona to receive the certificate and to attend the international congress, Dr Tebeila said it is always such an honour to attend international conferences and this year’s EANM was particularly invigorating with the latest scientific presentations in various theranostic applications by peers and well-known experts in the global nuclear medicine sphere. 

“The highlight was, of course, attending the annual Oncidium Foundation Ambassadors meeting and being part of the ICPO certification ceremony along with my counterparts from 23 other centres spanning Asia, Arab regions and Africa. 

“My wish is to see the UAH nuclear medicine department grow in leaps and bounds, epically in patient reach, clinical research with academic expansion and overall excellence in service delivery. This ICPO theranostics centre of excellence certification is only the beginning of what is to come.”

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept