Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 September 2025 | Story Martinette Brits | Photo Supplied
Engineering
From 2026, the University of the Free State (UFS) will offer its first four-year Bachelor of Engineering (BEng) in Agricultural and Biosystems Engineering, alongside new MSc and PhD programmes in Ecological and Nature-based Engineering Sciences – preparing graduates to address sustainability challenges in food, water, energy, and the environment.

For the first time, the University of the Free State (UFS) will be offering a full four-year engineering degree. From 2026, the Faculty of Natural and Agricultural Sciences will present the Bachelor of Engineering (BEng) in Agricultural and Biosystems Engineering, alongside new PhD and MSc degrees in Ecological and Nature-based Engineering Sciences – the first postgraduate qualifications of their kind on the African continent. Together, these programmes strengthen the university’s role in addressing some of the world’s most pressing and complex sustainability challenges.

Louis Lagrange, BEng Project Manager, describes the new undergraduate degree as a milestone for the university: “It will be the first full engineering degree presented by the UFS, and it directly targets the pressing water–food–energy nexus. It combines hard-core engineering and precision farming digital skills with the living world of biosystems to develop regenerative and environmentally sustainable food production systems.”

The BEng degree is endorsed by the Engineering Council of South Africa (ECSA) and approved by the South African Qualifications Authority (SAQA). It is designed to prepare students for the full agricultural engineering design process – from identifying and evaluating challenges, to designing, implementing, and testing sustainable solutions. Students will also be able to specialise through electives in animal production, horticulture, or open land crop production.

Lagrange explains that the programme offers students hands-on engagement from the start. “They will gain experience in agricultural mechanisations such as drones and GIS, water and irrigation systems, soil and environmental stewardship, renewable energy including solar and biofuels, precision agriculture, data-driven smart farming, and food processing.”

BEng graduates will be well positioned for diverse careers, ranging from agricultural/biosystems engineer, irrigation and water resource engineer, smart farming specialist, and food processing engineer to roles in mechanisation, soil conservation, animal husbandry, and energy conversion. Employers include agribusinesses, consulting engineers, environmental firms, government agencies, and research organisations. 

According to Dr Jacques Maritz, Head of Engineering Sciences, “Our BSc, MSc, and PhD graduates will be uniquely positioned as ecological engineering scientists who can also branch out to advanced sustainability analysts, computational sustainability professionals, or nature-based complexity scientists who will have the future-proof skill of solving complex sustainability challenges in interdisciplinary teams by using some of the most advanced technology.  On the horizon – an NQF 8 postgraduate diploma (PGDip) in Ecological and Nature-based Engineering Sciences to academically link undergraduate students to postgraduate studies.”     

 

Postgraduate degrees: advancing ecological engineering

Alongside this undergraduate development and the existing BSc specialising in Physics with Engineering Subjects, the UFS is also introducing new postgraduate degrees in Ecological and Nature-based Engineering Sciences. “These are the first qualifications of their kind on the African continent and are endorsed by the International Ecological Engineering Society (IEES) and the Ecological Engineering Institute of Africa (EEIA),” explains Dr Maritz.   

Dr Maritz explains: “Ecological engineering applies ecological and complexity science principles to design and restore sustainable ecosystems that integrate human society with the natural environment. These programmes will also strengthen work-integrated learning at the UFS, preparing graduates to address climate resilience, scientifically led biodiversity restoration, pollution remediation through data-driven interventions, and sustainable complex systems development.”

The postgraduate programmes are linked to the UFS’ growing research agenda, which includes plans for a biomass production facility at the UFS Industrial Park to advance scientific circular economy solutions, sustainable energy, and bio-inspired technologies. They also engage with cutting-edge fields such as extreme ecological engineering – creating new ecological functionality in severely degraded environments – and industrial ecological engineering, which reimagines the built environment through green construction materials, circular economy practices, and innovations such as 3D-printed green concrete.

Both Lagrange and Dr Maritz emphasise that these qualifications reflect the UFS’ Vision 130 commitment to being research-led, student-centred, and regionally engaged. They agree that the new programmes are ideally suited for students who want to combine engineering, science, and nature with emerging technologies, while pursuing careers that make a real impact on sustainability in South Africa and beyond.

News Archive

Double achievement for Prof. Paul Grobler
2012-04-25

 

Prof. Paul Grobler
Photo: Supplied
25 April 2012

Early this year, two journal editions appearing almost simultaneously in Europe featured cover photographs based on papers by Prof. Paul Grobler of the Department of Genetics and his collaborators.

These papers stem from collaborations with Prof. Gunther Hartl at the University of Kiel (Germany) and Dr Frank Zachos from the Natural History Museum in Vienna (Austria). Both papers cover aspects of the genetics of southern African antelope species.
 
The first paper appeared in the Journal of Zoological Systematics and Evolutionary Research” (from the Wiley-Blackwell group). This was titled “Genetic structure of the common impala (Aepyceros melampus melampus) in South Africa: phylogeography and implications for conservation”.
 
In this paper, the team analysed impala from various localities in South Africa to determine the relationship between distribution and genetic structure. The results suggest a clear relationship between genetic characteristics and habitat features that regulate gene flow.
 
The second appeared in the journal Mammalian Biology (from the Elsevier group), with the title “Genetic analysis of southern African gemsbok (Oryx gazella), reveals high variability, distinct lineages and strong divergence from the East African Oryx beisa”.
 
Here, the researchers looked at various aspects of the genetics and classification of gemsbok. Among the notable findings is that gemsbok populations on the game farms studied are less inbred than previously predicted.
 
Proffs. Grobler and Hartl initiated these projects on gemsbok and impala, with sub-sections of the research later completed as M.Sc. projects by students from both South Africa and Germany.
 
Prof. Grobler has been involved with aspects of the population genetics of various mammal species since the early 1990s, and continued with this line of research after joining the UFS in 2006. Current projects in this field include work on wildebeest, vervet monkeys and white rhinoceroses.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept