Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 September 2025 | Story Martinette Brits | Photo Supplied
Engineering
From 2026, the University of the Free State (UFS) will offer its first four-year Bachelor of Engineering (BEng) in Agricultural and Biosystems Engineering, alongside new MSc and PhD programmes in Ecological and Nature-based Engineering Sciences – preparing graduates to address sustainability challenges in food, water, energy, and the environment.

For the first time, the University of the Free State (UFS) will be offering a full four-year engineering degree. From 2026, the Faculty of Natural and Agricultural Sciences will present the Bachelor of Engineering (BEng) in Agricultural and Biosystems Engineering, alongside new PhD and MSc degrees in Ecological and Nature-based Engineering Sciences – the first postgraduate qualifications of their kind on the African continent. Together, these programmes strengthen the university’s role in addressing some of the world’s most pressing and complex sustainability challenges.

Louis Lagrange, BEng Project Manager, describes the new undergraduate degree as a milestone for the university: “It will be the first full engineering degree presented by the UFS, and it directly targets the pressing water–food–energy nexus. It combines hard-core engineering and precision farming digital skills with the living world of biosystems to develop regenerative and environmentally sustainable food production systems.”

The BEng degree is endorsed by the Engineering Council of South Africa (ECSA) and approved by the South African Qualifications Authority (SAQA). It is designed to prepare students for the full agricultural engineering design process – from identifying and evaluating challenges, to designing, implementing, and testing sustainable solutions. Students will also be able to specialise through electives in animal production, horticulture, or open land crop production.

Lagrange explains that the programme offers students hands-on engagement from the start. “They will gain experience in agricultural mechanisations such as drones and GIS, water and irrigation systems, soil and environmental stewardship, renewable energy including solar and biofuels, precision agriculture, data-driven smart farming, and food processing.”

BEng graduates will be well positioned for diverse careers, ranging from agricultural/biosystems engineer, irrigation and water resource engineer, smart farming specialist, and food processing engineer to roles in mechanisation, soil conservation, animal husbandry, and energy conversion. Employers include agribusinesses, consulting engineers, environmental firms, government agencies, and research organisations. 

According to Dr Jacques Maritz, Head of Engineering Sciences, “Our BSc, MSc, and PhD graduates will be uniquely positioned as ecological engineering scientists who can also branch out to advanced sustainability analysts, computational sustainability professionals, or nature-based complexity scientists who will have the future-proof skill of solving complex sustainability challenges in interdisciplinary teams by using some of the most advanced technology.  On the horizon – an NQF 8 postgraduate diploma (PGDip) in Ecological and Nature-based Engineering Sciences to academically link undergraduate students to postgraduate studies.”     

 

Postgraduate degrees: advancing ecological engineering

Alongside this undergraduate development and the existing BSc specialising in Physics with Engineering Subjects, the UFS is also introducing new postgraduate degrees in Ecological and Nature-based Engineering Sciences. “These are the first qualifications of their kind on the African continent and are endorsed by the International Ecological Engineering Society (IEES) and the Ecological Engineering Institute of Africa (EEIA),” explains Dr Maritz.   

Dr Maritz explains: “Ecological engineering applies ecological and complexity science principles to design and restore sustainable ecosystems that integrate human society with the natural environment. These programmes will also strengthen work-integrated learning at the UFS, preparing graduates to address climate resilience, scientifically led biodiversity restoration, pollution remediation through data-driven interventions, and sustainable complex systems development.”

The postgraduate programmes are linked to the UFS’ growing research agenda, which includes plans for a biomass production facility at the UFS Industrial Park to advance scientific circular economy solutions, sustainable energy, and bio-inspired technologies. They also engage with cutting-edge fields such as extreme ecological engineering – creating new ecological functionality in severely degraded environments – and industrial ecological engineering, which reimagines the built environment through green construction materials, circular economy practices, and innovations such as 3D-printed green concrete.

Both Lagrange and Dr Maritz emphasise that these qualifications reflect the UFS’ Vision 130 commitment to being research-led, student-centred, and regionally engaged. They agree that the new programmes are ideally suited for students who want to combine engineering, science, and nature with emerging technologies, while pursuing careers that make a real impact on sustainability in South Africa and beyond.

News Archive

Water research aids decision making on national level
2015-05-25

Photo: Leonie Bolleurs

With water being a valuable and scarce resource in the central regions of South Africa, it is no wonder that the UFS has large interdisciplinary research projects focusing on the conservation of water, as well as the sustainable use of this essential element.

The hydropedology research of Prof Pieter le Roux from the Department of Soil, Crop and Climate Sciences and his team at the UFS focuses on Blue water. Blue water is of critical importance to global health as it is cleared by the soil and stored underground for slow release in marshes, rivers, and deep groundwater. The release of this water bridges the droughts between showers and rain seasons and can stretch over several months and even years. The principles established by Prof Le Roux, now finds application in ecohydrology, urban hydrology, forestry hydrology, and hydrological modelling.

The Department of Agricultural Economics is busy with three research projects for the Water Research Commission of South Africa, with an estimated total budget of R7 million. Prof Henry Jordaan from this department is conducting research on the water footprint of selected field and forage crops, and the food products derived from these crops. The aim is to assess the impact of producing the food products on the scarce freshwater resource to inform policy makers, water managers and water users towards the sustainable use of freshwater for food production.

With his research, Prof Bennie Grové, also from this department, focuses on economically optimising water and electricity use in irrigated agriculture. The first project aims to optimise the adoption of technology for irrigation practices and irrigation system should water allocations to farmers were to be decreased in a catchment because of insufficient freshwater supplies to meet the increasing demand due to the requirements of population growth, economic development and the environment.

In another project, Prof Grové aims to economically evaluate alternative electricity management strategies such as optimally designed irrigation systems and the adoption of new technology to mitigate the substantial increase in electricity costs that puts the profitability of irrigation farming under severe pressure.

Marinda Avenant and her team in the Centre for Environmental Management (CEM), has been involved in the biomonitoring of the Free State rivers, including the Caledon, Modder Riet and part of the Orange River, since 1999. Researchers from the CEM regularly measures the present state of the water quality, algae, riparian vegetation, macro-invertebrates and fish communities in these rivers in order to detect degradation in ecosystem integrity (health).

The CEM has recently completed a project where an interactive vulnerability map and screening-level monitoring protocol for assessing the potential environmental impact of unconventional gas mining by means of hydraulic fracturing was developed. These tools will aid decision making at national level by providing information on the environment’s vulnerability to unconventional gas mining.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept