Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 September 2025 | Story Martinette Brits | Photo Supplied
Engineering
From 2026, the University of the Free State (UFS) will offer its first four-year Bachelor of Engineering (BEng) in Agricultural and Biosystems Engineering, alongside new MSc and PhD programmes in Ecological and Nature-based Engineering Sciences – preparing graduates to address sustainability challenges in food, water, energy, and the environment.

For the first time, the University of the Free State (UFS) will be offering a full four-year engineering degree. From 2026, the Faculty of Natural and Agricultural Sciences will present the Bachelor of Engineering (BEng) in Agricultural and Biosystems Engineering, alongside new PhD and MSc degrees in Ecological and Nature-based Engineering Sciences – the first postgraduate qualifications of their kind on the African continent. Together, these programmes strengthen the university’s role in addressing some of the world’s most pressing and complex sustainability challenges.

Louis Lagrange, BEng Project Manager, describes the new undergraduate degree as a milestone for the university: “It will be the first full engineering degree presented by the UFS, and it directly targets the pressing water–food–energy nexus. It combines hard-core engineering and precision farming digital skills with the living world of biosystems to develop regenerative and environmentally sustainable food production systems.”

The BEng degree is endorsed by the Engineering Council of South Africa (ECSA) and approved by the South African Qualifications Authority (SAQA). It is designed to prepare students for the full agricultural engineering design process – from identifying and evaluating challenges, to designing, implementing, and testing sustainable solutions. Students will also be able to specialise through electives in animal production, horticulture, or open land crop production.

Lagrange explains that the programme offers students hands-on engagement from the start. “They will gain experience in agricultural mechanisations such as drones and GIS, water and irrigation systems, soil and environmental stewardship, renewable energy including solar and biofuels, precision agriculture, data-driven smart farming, and food processing.”

BEng graduates will be well positioned for diverse careers, ranging from agricultural/biosystems engineer, irrigation and water resource engineer, smart farming specialist, and food processing engineer to roles in mechanisation, soil conservation, animal husbandry, and energy conversion. Employers include agribusinesses, consulting engineers, environmental firms, government agencies, and research organisations. 

According to Dr Jacques Maritz, Head of Engineering Sciences, “Our BSc, MSc, and PhD graduates will be uniquely positioned as ecological engineering scientists who can also branch out to advanced sustainability analysts, computational sustainability professionals, or nature-based complexity scientists who will have the future-proof skill of solving complex sustainability challenges in interdisciplinary teams by using some of the most advanced technology.  On the horizon – an NQF 8 postgraduate diploma (PGDip) in Ecological and Nature-based Engineering Sciences to academically link undergraduate students to postgraduate studies.”     

 

Postgraduate degrees: advancing ecological engineering

Alongside this undergraduate development and the existing BSc specialising in Physics with Engineering Subjects, the UFS is also introducing new postgraduate degrees in Ecological and Nature-based Engineering Sciences. “These are the first qualifications of their kind on the African continent and are endorsed by the International Ecological Engineering Society (IEES) and the Ecological Engineering Institute of Africa (EEIA),” explains Dr Maritz.   

Dr Maritz explains: “Ecological engineering applies ecological and complexity science principles to design and restore sustainable ecosystems that integrate human society with the natural environment. These programmes will also strengthen work-integrated learning at the UFS, preparing graduates to address climate resilience, scientifically led biodiversity restoration, pollution remediation through data-driven interventions, and sustainable complex systems development.”

The postgraduate programmes are linked to the UFS’ growing research agenda, which includes plans for a biomass production facility at the UFS Industrial Park to advance scientific circular economy solutions, sustainable energy, and bio-inspired technologies. They also engage with cutting-edge fields such as extreme ecological engineering – creating new ecological functionality in severely degraded environments – and industrial ecological engineering, which reimagines the built environment through green construction materials, circular economy practices, and innovations such as 3D-printed green concrete.

Both Lagrange and Dr Maritz emphasise that these qualifications reflect the UFS’ Vision 130 commitment to being research-led, student-centred, and regionally engaged. They agree that the new programmes are ideally suited for students who want to combine engineering, science, and nature with emerging technologies, while pursuing careers that make a real impact on sustainability in South Africa and beyond.

News Archive

UFS Department of Physics offers unique learning experience with on-campus radio telescope
2015-12-14

Athanasius Ramaila, an Honours student in the Department of Physics, and Dr Brian van Soelen, a lecturer from the same department, in the laboratory where the radio telescope is housed in the new wing of the Physics Building on the Bloemfontein Campus of the UFS. The telescope will be used to expose graduate students to the basic techniques of radio astronomy.
Photo: Charl Devenish

The university this year added a four-storey wing to the existing Physics Building on the Bloemfontein Campus. The new development, which includes four lecture halls and four laboratories, complements other world-class facilities such as the X-ray photoelectron spectroscope and the scanning electron microscope.

A unique asset that distinguishes the UFS Department of Physics from other similar institutions, is the Boyden Observatory situated approximately 27 km northeast of Bloemfontein. The observatory houses a powerful 1.5 m optical telescope, and several smaller, but well equipped telescopes.

According to Pieter Meintjes, Professor in the Department of Physics, the observatory has acquired a new addition - a 0.5 m optical telescope donated by the South African Astronomical Observatory (SAAO) and the National Research Foundation (NRF) to the UFS Astrophysics Group. This optical telescope is one of two powerful optical telescopes used to introduce students to techniques such as photometry and spectroscopy.

“The telescope at Boyden forms an integral part of the Department of Physic’s student training and research programme. Because the UFS is the only university in South Africa operating such a facility, and one of only a few globally, Astrophysics students at the UFS have the unique privilege of having unrestricted access to these telescopes for their MSc and PhD studies,” says Prof Meintjes. In addition, the department has also built a radio telescope as part of a post-graduate student project. The telescope, housed in the new wing of the Physics Building at the Bloemfontein Campus of the UFS, will be used to expose graduate students to the basic techniques of radio astronomy, especially in light of the fact that the SKA is nascent. Prof Meintjes would like to act proactively by grounding his students in the relevant techniques of radio astronomy. The telescope will be used to introduce students to the manner in which radio flux calibrations are performed in order to determine the energy output of an emitting source.

At undergraduate level, the radio telescope will be used, together with optical telescopes in the Astrophysics laboratory, to place students at a high baseline regarding the level of multi-wavelength astrophysics training received at the UFS.

Third-year and Honours students will also have the opportunity of practical training in a research laboratory with 15 computers. The laboratory is equipped with software used to reduce and analyse multi-wavelength data.

“My goal is for the UFS to become the major centre of multi-wavelength astrophysics in South Africa and a key role player in the international arena. To be able to do this, our training should be world class,” Prof Meintjes said.

Aided by its world-class facilities and research, the Department of Physics is competing with the best in the world. Research-wise, a group from the Department of Physics is intensively involved with the SKA Project (Square Kilometre Array), with 3 000 dishes reaching from Carnavon in the Karoo to Mauritius in the Indian Ocean. According to Prof Meintjes, many detailed studies can be conducted with the SKA system of sources, showing major eruptions and mass effluent from the systems. Athanasius Ramaila, a BSc Honours student in Astrophysics at the UFS, has also received a two-year SKA internship, where he will be engaged in the SKA software engineering programme to help with developing software for the telescope.

The UFS Astrophysics Group is focusing on the multi-wavelength study of high-energy astrophysics sources. “This multi-wavelength approach to astrophysics is in line with the recent announcement by government that multi wavelength astrophysics will be the main focus for astrophysics research in South Africa. It is also a very important focus for research in the international arena, as can be seen from the large number of international conferences having a multi-wavelength character,” Prof Meintjes said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept