Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 September 2025 | Story Martinette Brits | Photo Supplied
Engineering
From 2026, the University of the Free State (UFS) will offer its first four-year Bachelor of Engineering (BEng) in Agricultural and Biosystems Engineering, alongside new MSc and PhD programmes in Ecological and Nature-based Engineering Sciences – preparing graduates to address sustainability challenges in food, water, energy, and the environment.

For the first time, the University of the Free State (UFS) will be offering a full four-year engineering degree. From 2026, the Faculty of Natural and Agricultural Sciences will present the Bachelor of Engineering (BEng) in Agricultural and Biosystems Engineering, alongside new PhD and MSc degrees in Ecological and Nature-based Engineering Sciences – the first postgraduate qualifications of their kind on the African continent. Together, these programmes strengthen the university’s role in addressing some of the world’s most pressing and complex sustainability challenges.

Louis Lagrange, BEng Project Manager, describes the new undergraduate degree as a milestone for the university: “It will be the first full engineering degree presented by the UFS, and it directly targets the pressing water–food–energy nexus. It combines hard-core engineering and precision farming digital skills with the living world of biosystems to develop regenerative and environmentally sustainable food production systems.”

The BEng degree is endorsed by the Engineering Council of South Africa (ECSA) and approved by the South African Qualifications Authority (SAQA). It is designed to prepare students for the full agricultural engineering design process – from identifying and evaluating challenges, to designing, implementing, and testing sustainable solutions. Students will also be able to specialise through electives in animal production, horticulture, or open land crop production.

Lagrange explains that the programme offers students hands-on engagement from the start. “They will gain experience in agricultural mechanisations such as drones and GIS, water and irrigation systems, soil and environmental stewardship, renewable energy including solar and biofuels, precision agriculture, data-driven smart farming, and food processing.”

BEng graduates will be well positioned for diverse careers, ranging from agricultural/biosystems engineer, irrigation and water resource engineer, smart farming specialist, and food processing engineer to roles in mechanisation, soil conservation, animal husbandry, and energy conversion. Employers include agribusinesses, consulting engineers, environmental firms, government agencies, and research organisations. 

According to Dr Jacques Maritz, Head of Engineering Sciences, “Our BSc, MSc, and PhD graduates will be uniquely positioned as ecological engineering scientists who can also branch out to advanced sustainability analysts, computational sustainability professionals, or nature-based complexity scientists who will have the future-proof skill of solving complex sustainability challenges in interdisciplinary teams by using some of the most advanced technology.  On the horizon – an NQF 8 postgraduate diploma (PGDip) in Ecological and Nature-based Engineering Sciences to academically link undergraduate students to postgraduate studies.”     

 

Postgraduate degrees: advancing ecological engineering

Alongside this undergraduate development and the existing BSc specialising in Physics with Engineering Subjects, the UFS is also introducing new postgraduate degrees in Ecological and Nature-based Engineering Sciences. “These are the first qualifications of their kind on the African continent and are endorsed by the International Ecological Engineering Society (IEES) and the Ecological Engineering Institute of Africa (EEIA),” explains Dr Maritz.   

Dr Maritz explains: “Ecological engineering applies ecological and complexity science principles to design and restore sustainable ecosystems that integrate human society with the natural environment. These programmes will also strengthen work-integrated learning at the UFS, preparing graduates to address climate resilience, scientifically led biodiversity restoration, pollution remediation through data-driven interventions, and sustainable complex systems development.”

The postgraduate programmes are linked to the UFS’ growing research agenda, which includes plans for a biomass production facility at the UFS Industrial Park to advance scientific circular economy solutions, sustainable energy, and bio-inspired technologies. They also engage with cutting-edge fields such as extreme ecological engineering – creating new ecological functionality in severely degraded environments – and industrial ecological engineering, which reimagines the built environment through green construction materials, circular economy practices, and innovations such as 3D-printed green concrete.

Both Lagrange and Dr Maritz emphasise that these qualifications reflect the UFS’ Vision 130 commitment to being research-led, student-centred, and regionally engaged. They agree that the new programmes are ideally suited for students who want to combine engineering, science, and nature with emerging technologies, while pursuing careers that make a real impact on sustainability in South Africa and beyond.

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept