Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
02 December 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Solomon read more
Poverty in the Thabo Mofutsanyana District (the poorest district in the Free State province) has implications for both the mountain environment and the people in the area. Pictured here is Prof Geofrey Mukwada, Associate Professor in the Department of Geography on the UFS Qwaqwa Campus, also affiliated to the Afromontane Research Unit (ARU).

Poverty, defined by Statistics South Africa as earning less than R300 a month, is a reality that many mountain communities struggle with.

Prof Geofrey Mukwada, Associate Professor in the Department of Geography on the UFS Qwaqwa Campus, also affiliated to the Afromontane Research Unit (ARU), published a number of articles on the mountain population in the Thabo Mofutsanyana District (the poorest district in the Free State province). In a research paper with postgraduate student Solomon Zondo, he specifically focuses on the value-chain analysis of the Witsieshoek conservation area and its environment. 

They looked at the inter-relationship between nature and the rural population and how the environment has changed as a result. For this largely poor community, the income generated from natural resources is an important source of livelihood. 

To earn a living, the community is pursuing several ways to generate an income. This has implications for both the mountain environment and the people in the area. 

Impacting the environment

Whether it is mining for sandstone, herding cattle or selling medicinal plants, all these activities have an ecological and socio-economic impact. 

A large percentage of the population in the Witsieshoek Community Conservation Area derives their income from livestock grazing. Cattle herding often leads to overgrazing – which results in soil erosion in the long term, preventing water from draining into the ground and depriving plants from much-needed moisture. Connected to the excessive removal of indigenous plants, is the spread of invasive species. As invasive trees and vegetation gulp up water, the severe impact of drought in the area is increasing.

Harvesting and selling medicinal plants to generate income for a sustainable livelihood also affect the surrounding environment. The mostly elderly ladies harvest and sell, among others, Arum lily and Pineapple lily for their medicinal properties and ornamental use. Harvesting these plants adds to the spread of invasive species, as they push away indigenous plants.

Small sandstone mining operations are another means to earn a living. Neither the customer, locally or outside the Witsieshoek area, nor the supplier, usually from Witsieshoek, is held accountable for the degradation of the environment. Careless mining not only results in a decline in ecosystem health, with scree from sandstone cutting littering the rangelands and the finer particles causing silt in rivers and dams (damaging any equipment used to extract water from rivers and dams); it also spoils pastures which locals depend on for their livelihood. 

Even with the 15% increase in tourism (2016), a living through the holiday industry is not always keeping the wolf from the door. According to Prof Mukwada, many literature sources have shown that tourism may fail to reduce poverty. During a study, respondents interviewed in the Clarens area indicated that they only receive wages during the busy months of the year (approximately 4–6 months). Many of the workers in Clarens and the Golden Gate Highlands National Park do not have easy access to chain stores, but only to small grocery stores where goods are much more expensive. Travelling to a town where they will pay less for groceries is costly, making it difficult to have the same standard of living as workers elsewhere.

“With the current situation, water insecurity is likely to worsen,” says Prof Mukwada.

Coming up with solutions

Is it possible to look for alternative livelihood sources? It is not easy to come up with simple solutions to the challenges. As Prof Mukwada explained, what might be a solution to one problem could have negative implications on another front. “One needs an integrated approach,” he says. 

In terms of tourism, one could consider training the locals in tourism-related skills, adequately equipping them with skills to increase their value. “Develop tourism that is inclusive and will benefit low-income earners who cannot invest in hotels and restaurants,” Prof Mukwada adds. 

And with a large number of people earning their income from herding, one can suggest that nearby, flatter land is made available to resettle communities, thus providing an alternative area for grazing. In flatter areas there is also less erosion. It is, however, key to determine whether the communities would be prepared to move to a new area.

Having a voice

He also believes that good relationships between industry, government, and the community are important to make a positive difference in the area. A platform is needed where the people’s limited voice will be heard in policy making. 

“The most effective way to find a solution is to listen to the people in the community. Give people the information and find out from them which of these options are possible within their local context. And do not prescribe. One needs to understand the community and its values,” he adds.

When there is understanding between the different role players and when the community has a voice, the park resources, if managed properly, have a chance to provide long-term sustainable benefits to the people of the area. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept