Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
02 December 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Solomon read more
Poverty in the Thabo Mofutsanyana District (the poorest district in the Free State province) has implications for both the mountain environment and the people in the area. Pictured here is Prof Geofrey Mukwada, Associate Professor in the Department of Geography on the UFS Qwaqwa Campus, also affiliated to the Afromontane Research Unit (ARU).

Poverty, defined by Statistics South Africa as earning less than R300 a month, is a reality that many mountain communities struggle with.

Prof Geofrey Mukwada, Associate Professor in the Department of Geography on the UFS Qwaqwa Campus, also affiliated to the Afromontane Research Unit (ARU), published a number of articles on the mountain population in the Thabo Mofutsanyana District (the poorest district in the Free State province). In a research paper with postgraduate student Solomon Zondo, he specifically focuses on the value-chain analysis of the Witsieshoek conservation area and its environment. 

They looked at the inter-relationship between nature and the rural population and how the environment has changed as a result. For this largely poor community, the income generated from natural resources is an important source of livelihood. 

To earn a living, the community is pursuing several ways to generate an income. This has implications for both the mountain environment and the people in the area. 

Impacting the environment

Whether it is mining for sandstone, herding cattle or selling medicinal plants, all these activities have an ecological and socio-economic impact. 

A large percentage of the population in the Witsieshoek Community Conservation Area derives their income from livestock grazing. Cattle herding often leads to overgrazing – which results in soil erosion in the long term, preventing water from draining into the ground and depriving plants from much-needed moisture. Connected to the excessive removal of indigenous plants, is the spread of invasive species. As invasive trees and vegetation gulp up water, the severe impact of drought in the area is increasing.

Harvesting and selling medicinal plants to generate income for a sustainable livelihood also affect the surrounding environment. The mostly elderly ladies harvest and sell, among others, Arum lily and Pineapple lily for their medicinal properties and ornamental use. Harvesting these plants adds to the spread of invasive species, as they push away indigenous plants.

Small sandstone mining operations are another means to earn a living. Neither the customer, locally or outside the Witsieshoek area, nor the supplier, usually from Witsieshoek, is held accountable for the degradation of the environment. Careless mining not only results in a decline in ecosystem health, with scree from sandstone cutting littering the rangelands and the finer particles causing silt in rivers and dams (damaging any equipment used to extract water from rivers and dams); it also spoils pastures which locals depend on for their livelihood. 

Even with the 15% increase in tourism (2016), a living through the holiday industry is not always keeping the wolf from the door. According to Prof Mukwada, many literature sources have shown that tourism may fail to reduce poverty. During a study, respondents interviewed in the Clarens area indicated that they only receive wages during the busy months of the year (approximately 4–6 months). Many of the workers in Clarens and the Golden Gate Highlands National Park do not have easy access to chain stores, but only to small grocery stores where goods are much more expensive. Travelling to a town where they will pay less for groceries is costly, making it difficult to have the same standard of living as workers elsewhere.

“With the current situation, water insecurity is likely to worsen,” says Prof Mukwada.

Coming up with solutions

Is it possible to look for alternative livelihood sources? It is not easy to come up with simple solutions to the challenges. As Prof Mukwada explained, what might be a solution to one problem could have negative implications on another front. “One needs an integrated approach,” he says. 

In terms of tourism, one could consider training the locals in tourism-related skills, adequately equipping them with skills to increase their value. “Develop tourism that is inclusive and will benefit low-income earners who cannot invest in hotels and restaurants,” Prof Mukwada adds. 

And with a large number of people earning their income from herding, one can suggest that nearby, flatter land is made available to resettle communities, thus providing an alternative area for grazing. In flatter areas there is also less erosion. It is, however, key to determine whether the communities would be prepared to move to a new area.

Having a voice

He also believes that good relationships between industry, government, and the community are important to make a positive difference in the area. A platform is needed where the people’s limited voice will be heard in policy making. 

“The most effective way to find a solution is to listen to the people in the community. Give people the information and find out from them which of these options are possible within their local context. And do not prescribe. One needs to understand the community and its values,” he adds.

When there is understanding between the different role players and when the community has a voice, the park resources, if managed properly, have a chance to provide long-term sustainable benefits to the people of the area. 

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept