Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
28 November 2019 | Story Leonie Bolleurs
Read more new
Dr Sandy-Lynn Steenhuisen and Ruth Cozien at a spot high up in the Maloti-Drakensberg World Heritage Site, close to Sentinel Peak, photographing a Drakensberg crag lizard underneath the leaves of the ‘Hidden Flower’.

Flowers high up in the Maloti-Drakensberg World Heritage Site made world news when it was discovered that the Drakensberg Crag Lizard is their sole pollinator. 

This first for continental Africa – a plant being pollinated by a lizard – is a discovery by a research group including Dr Sandy-Lynn Steenhuisen, Senior Lecturer in the Department of Plant Sciences and affiliate of the Afromontane Research Unit (ARU) at the Qwaqwa Campus of the University of the Free State (UFS), in collaboration with Dr Timo van der Niet, Prof Steven Johnson, and project leader Ruth Cozien, all from the Pollination Ecology Research Laboratory and Centre for Functional Biodiversity at the University of KwaZulu-Natal.

Besides their work being published in popular news here in South Africa (including an isiZulu article), it has also received coverage in, among others, Belgium, Canada, the Netherlands, and the United States of America. 

Is it a bee, a bird, perhaps a mouse?

‘Hidden Flower’, true to its name, is a plant species with flowers hidden at ground level, underneath the leaves of the plant. Like the leaves, the flowers are also green. With the flowers filled with nectar (up to 1 ml per plant) and strongly scented, one concludes that, just as with other flowers, these flowers must be visited by a pollinator. Is it a bee, is it a bird, perhaps a mouse/non-flying mammal?

According to Dr Steenhuisen, who was brought into the project because of her experience with rodents pollinating proteas, many plants are adapted to attract and be pollinated by a specific animal. They attract their pollinators using particular scents and colours and reward them for their service with, for example, nectar, oil, fragrance, and sometimes even shelter. 

The ‘Hidden Flower’ initially had the group of researchers thinking that it was being pollinated by a non-flying mammal. “Everything about the plant made it look like it should be mammal-pollinated,” Dr Steenhuisen said. 

They investigated all options, using several techniques to assess the contribution of different possible animals to set seed. To further assist them in their quest to find the true pollinator, the team put up motion cameras that recorded activity in the area of the ‘Hidden Flower’. 

Great was their surprise when studying the video material after a week of fieldwork in the mountains, finding shy lizards dipping their snouts in the ‘Hidden Flower’ and lapping up the nectar.

Dr Steenhuisen described this discovery as completely bizarre, exciting, and fascinating. 

To make 100% sure that lizards are pollinating the ‘Hidden Flower’, these animals were excluded from the plants. Results published in a paper in Ecology showed that when the lizards were experimentally excluded from the plants, the number of seeds produced dropped dramatically by almost 95%. This finding helped to further prove their discovery. 

Strong scent and bright orange colour attract

The team researched the new phenomenon and found that although flower visitation by lizards is not unknown, it occurs almost exclusively on oceanic islands. Cozien says one should keep in mind that mountains are like sky islands and might therefore have similarities with oceanic islands in terms of their ecology.

The strong scent and the touch of orange at the base of the inside of the flowers is believed to play an important role in attracting lizards. The little lizard may recognise the spots of orange inside the flowers which resemble the orange colour of a male lizard in mating season, attracting females. Lured by the strong scent and the orange spots, the reptiles stick their snouts into the flower in search of nectar, pollinating the ‘Hidden Flower’; thus, making sure that this flower will continue to grow on the slopes of Sentinel Peak in the Maloti Drakensberg range. 

This research finding on lizard pollination, which reads almost like a fairy tale with its islands, hidden flowers, nectar from the gods, and little dragons, shows that there are still many unknown and surprising interactions that need to be discovered and conserved to ensure a healthy ecological system. 

The research findings of this study were published in April 2019. 

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept