Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
28 November 2019 | Story Leonie Bolleurs
Read more new
Dr Sandy-Lynn Steenhuisen and Ruth Cozien at a spot high up in the Maloti-Drakensberg World Heritage Site, close to Sentinel Peak, photographing a Drakensberg crag lizard underneath the leaves of the ‘Hidden Flower’.

Flowers high up in the Maloti-Drakensberg World Heritage Site made world news when it was discovered that the Drakensberg Crag Lizard is their sole pollinator. 

This first for continental Africa – a plant being pollinated by a lizard – is a discovery by a research group including Dr Sandy-Lynn Steenhuisen, Senior Lecturer in the Department of Plant Sciences and affiliate of the Afromontane Research Unit (ARU) at the Qwaqwa Campus of the University of the Free State (UFS), in collaboration with Dr Timo van der Niet, Prof Steven Johnson, and project leader Ruth Cozien, all from the Pollination Ecology Research Laboratory and Centre for Functional Biodiversity at the University of KwaZulu-Natal.

Besides their work being published in popular news here in South Africa (including an isiZulu article), it has also received coverage in, among others, Belgium, Canada, the Netherlands, and the United States of America. 

Is it a bee, a bird, perhaps a mouse?

‘Hidden Flower’, true to its name, is a plant species with flowers hidden at ground level, underneath the leaves of the plant. Like the leaves, the flowers are also green. With the flowers filled with nectar (up to 1 ml per plant) and strongly scented, one concludes that, just as with other flowers, these flowers must be visited by a pollinator. Is it a bee, is it a bird, perhaps a mouse/non-flying mammal?

According to Dr Steenhuisen, who was brought into the project because of her experience with rodents pollinating proteas, many plants are adapted to attract and be pollinated by a specific animal. They attract their pollinators using particular scents and colours and reward them for their service with, for example, nectar, oil, fragrance, and sometimes even shelter. 

The ‘Hidden Flower’ initially had the group of researchers thinking that it was being pollinated by a non-flying mammal. “Everything about the plant made it look like it should be mammal-pollinated,” Dr Steenhuisen said. 

They investigated all options, using several techniques to assess the contribution of different possible animals to set seed. To further assist them in their quest to find the true pollinator, the team put up motion cameras that recorded activity in the area of the ‘Hidden Flower’. 

Great was their surprise when studying the video material after a week of fieldwork in the mountains, finding shy lizards dipping their snouts in the ‘Hidden Flower’ and lapping up the nectar.

Dr Steenhuisen described this discovery as completely bizarre, exciting, and fascinating. 

To make 100% sure that lizards are pollinating the ‘Hidden Flower’, these animals were excluded from the plants. Results published in a paper in Ecology showed that when the lizards were experimentally excluded from the plants, the number of seeds produced dropped dramatically by almost 95%. This finding helped to further prove their discovery. 

Strong scent and bright orange colour attract

The team researched the new phenomenon and found that although flower visitation by lizards is not unknown, it occurs almost exclusively on oceanic islands. Cozien says one should keep in mind that mountains are like sky islands and might therefore have similarities with oceanic islands in terms of their ecology.

The strong scent and the touch of orange at the base of the inside of the flowers is believed to play an important role in attracting lizards. The little lizard may recognise the spots of orange inside the flowers which resemble the orange colour of a male lizard in mating season, attracting females. Lured by the strong scent and the orange spots, the reptiles stick their snouts into the flower in search of nectar, pollinating the ‘Hidden Flower’; thus, making sure that this flower will continue to grow on the slopes of Sentinel Peak in the Maloti Drakensberg range. 

This research finding on lizard pollination, which reads almost like a fairy tale with its islands, hidden flowers, nectar from the gods, and little dragons, shows that there are still many unknown and surprising interactions that need to be discovered and conserved to ensure a healthy ecological system. 

The research findings of this study were published in April 2019. 

News Archive

Plant-strengthening agent enhances natural ability of plants to survive
2015-07-27

Drought, diseases, and fungi. These are factors that farmers have no control over, and they often have to watch despondently as their crops are damaged. In addition, the practice of breeding plants in special and strictly-controlled conditions, has resulted in crops losing the chemical ability to protect themselves in nature.

Researchers in the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS) have developed an organic agent that restores this chemical imbalance in plants. It enables the plant to build its own resistance against mild stress factors, and thus ensures increased growth and yield by the plant.

ComCat®, a plant-strengthening agent, is the result of extensive research by the German company, Agraforum AG, together with the UFS. Commercialisation was initially limited to Europe, while research was done at the UFS.

“Plants have become weak because they were grown specially and in isolation. They can’t protect themselves any longer,” says Dr Elmarie van der Watt from the department.

Dr Van der Watt says that, in nature, plants communicate by means of natural chemicals as part of their resistance mechanisms towards various stress conditions. These chemicals enable them to protect themselves against stress conditions, such as diseases and fungi (biotic conditions) or wind and droughts (abiotic conditions).

Most wild plant varieties are usually well-adapted to resist these stress factors. However, monoculture crops have lost this ability to a large extent.

The European researchers extracted these self-protection chemicals from wild plants, and made them available to the UFS for research and development.

“This important survival mechanism became dormant in monoculture crops. ComCat® wakes the plant up and says ‘Hey, you should start protecting yourself’.”

Research over the last few years has shown that the agent, applied mostly as a foliar spray, subsequently leads to better seedlings, as well as to growth, and yields enhancement of various crops. This is good news for the agricultural sector as it does not induce unwanted early vegetative growth that could jeopardise the final yield ? as happened in the past for nitrogen application at an early growth stage.

“The use of synthetic agents, such as fungicides which contain copper, are now banned. Nowadays, options for natural and organic agriculture is being investigated. This product is already widely used in Europe, but because farmers are often swamped by quacks, the South African market is still somewhat sceptical.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept