Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
20 July 2020 | Story Leonie Bolleurs | Photo Supplied
The view from one of the offices in the Marion Island research station, with fresh snowfall in the interior of the island in the background.

Liezel Rudolph, lecturer and researcher in the Department of Geography at the University of the Free State (UFS), is strongly convinced that the Southern Hemisphere’s past glacial cycles will provide valuable insights to help predict and prepare for future climate change. Climate is changing fast and the magnitude of change we have seen over the last 30 years has taken a hundred or several hundred years to occur in the past. 

It is not only temperatures that are rising, but changes in wind patterns, rain cycles, oceanic circulation, etc., are also observed. As we do not know how the earth will respond or adapt to such rapid and drastic changes in climatic patterns, this poses various threats.

Link between landscape responses and climate change

Rudolph focuses her research on reconstructing the past climate of Marion Island. 

She had the wonderful opportunity to visit the island for the past three years with study and project leaders, Profs Werner Nel from the University of Fort Hare and David Hedding from UNISA, she departed on a ship to Marion Island to conduct fieldwork.They published their research findings of fieldwork conducted in 2017 and 2018.  

According to Rudolph, research in Antarctica, the Southern Ocean, and islands such as Marion Island is very important. South Africa is the only African country with research stations that have the ability to explore these regions.

“Marion Island has many landforms that could only have been created by glacial erosional or depositional processes, with glaciers currently absent from the island. To determine when the island was last in a full glacial period, we date the formation ages of these landforms.”

“In the short time we have been visiting the island, it was impossible to notice any drastic changes in the island climate. That is why we use these very old landforms to tell us more about periods before humans visited the island,” she says. 

Rudolph believes that understanding the link between landscape responses and climate change of the past can help to better predict some of the climate change processes that are currently threatening the planet.

“There’s a principle in geography called ‘uniformitarianism’, whereby we assume that the earth-surface processes we observe today, are the same as those that have been active in the past,” says Rudolph.

As scientists, they thus look at evidence of past geomorphic processes (which remain in the landscape in various forms, e.g. residual landforms, stratigraphic sequences, etc.) to piece together what the past climate was like. In the same way, they also use this principle to predict how certain earth processes will change in the future, along with climate changes.

“In return, we understand how the climate and the earth’s surface interact, and we can better predict how the earth will respond to climate change,” Rudolph adds. 

Society to play its part in climate change

In the long run, we as the public should play our part in readying society for the effects of climate change. 

Rudolph says society can play a positive role in terms of climate change by educating themselves with unbiased, scientifically sound information on the true state of climate change and by responding within their own spheres of influence.

“Don’t leave everything up to politicians and policy. As the public, you can start to make progress by assessing the effects that climate change may have on your industry, business or society, and strategise on how to adapt your processes to deal with these changes.”

“Be responsible with our natural resources, reduce your waste, support local businesses that are sustainable, and volunteer at a local environmental protection/clean-up organisation. All the small efforts will eventually add up to substantial change,” she says. 

News Archive

Wayde sets 200m SA record, and is world’s fastest in 2017
2017-06-13

 

Description: Wayde sets 200m SA record, banner Tags: Wayde sets 200m SA record, banner

Wayde van Niekerk is in great form leading up to the World Championships
in London in August. Photo: SASPA

 

He was the first South African to break the 20-second barrier in the 200m, but for the past two years Wayde van Niekerk had to be satisfied that fellow countryman Anaso Jobodwana was quicker. Now the Kovsie athlete isn’t only the national record holder again – he also is the fastest man on the planet in the 200m in 2017.

After Van Niekerk ran a 19.90, the world’s fastest this year, when he won the South African title in Potchefstroom in April, the American Christian Coleman (19.85) improved on that.

Personal best and 0.06 seconds quicker than Anaso
However, Van Niekerk ran a 19.84 in the 200m at the Racers Grand Prix in Kingston, Jamaica, on 11 June 2017. This was 0.06 seconds quicker than his personal best, and 0.03 seconds better than Jobodwana’s national record of 19.87 at the 2015 World Championships in Beijing. Van Niekerk was the first South African to run under 20 seconds in the 200m when he did so two years ago in 19.97 in Lucerne, Switzerland.

Same pace a second time in a week

It was also the second time in a week that the 400m world record-holder ran an 19.84 in the 200m. This after he did it on a temporary built track at the Boost Boston Games on 4 June 2017. The race was run on a straight street course and was therefore not officially recognised as a record.

“This is definitely a positive step forward,” Van Niekerk said, according to www.iaaf.org. “I felt that I was in pretty good shape last week in Boston, I wanted to repeat that here (in Kingston).”

He seems to be in good shape leading up to his attempt to run a double, his favourite 400m and the 200m, at the World Championships in London, England, in August.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept