Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
20 July 2020 | Story Leonie Bolleurs | Photo Supplied
The view from one of the offices in the Marion Island research station, with fresh snowfall in the interior of the island in the background.

Liezel Rudolph, lecturer and researcher in the Department of Geography at the University of the Free State (UFS), is strongly convinced that the Southern Hemisphere’s past glacial cycles will provide valuable insights to help predict and prepare for future climate change. Climate is changing fast and the magnitude of change we have seen over the last 30 years has taken a hundred or several hundred years to occur in the past. 

It is not only temperatures that are rising, but changes in wind patterns, rain cycles, oceanic circulation, etc., are also observed. As we do not know how the earth will respond or adapt to such rapid and drastic changes in climatic patterns, this poses various threats.

Link between landscape responses and climate change

Rudolph focuses her research on reconstructing the past climate of Marion Island. 

She had the wonderful opportunity to visit the island for the past three years with study and project leaders, Profs Werner Nel from the University of Fort Hare and David Hedding from UNISA, she departed on a ship to Marion Island to conduct fieldwork.They published their research findings of fieldwork conducted in 2017 and 2018.  

According to Rudolph, research in Antarctica, the Southern Ocean, and islands such as Marion Island is very important. South Africa is the only African country with research stations that have the ability to explore these regions.

“Marion Island has many landforms that could only have been created by glacial erosional or depositional processes, with glaciers currently absent from the island. To determine when the island was last in a full glacial period, we date the formation ages of these landforms.”

“In the short time we have been visiting the island, it was impossible to notice any drastic changes in the island climate. That is why we use these very old landforms to tell us more about periods before humans visited the island,” she says. 

Rudolph believes that understanding the link between landscape responses and climate change of the past can help to better predict some of the climate change processes that are currently threatening the planet.

“There’s a principle in geography called ‘uniformitarianism’, whereby we assume that the earth-surface processes we observe today, are the same as those that have been active in the past,” says Rudolph.

As scientists, they thus look at evidence of past geomorphic processes (which remain in the landscape in various forms, e.g. residual landforms, stratigraphic sequences, etc.) to piece together what the past climate was like. In the same way, they also use this principle to predict how certain earth processes will change in the future, along with climate changes.

“In return, we understand how the climate and the earth’s surface interact, and we can better predict how the earth will respond to climate change,” Rudolph adds. 

Society to play its part in climate change

In the long run, we as the public should play our part in readying society for the effects of climate change. 

Rudolph says society can play a positive role in terms of climate change by educating themselves with unbiased, scientifically sound information on the true state of climate change and by responding within their own spheres of influence.

“Don’t leave everything up to politicians and policy. As the public, you can start to make progress by assessing the effects that climate change may have on your industry, business or society, and strategise on how to adapt your processes to deal with these changes.”

“Be responsible with our natural resources, reduce your waste, support local businesses that are sustainable, and volunteer at a local environmental protection/clean-up organisation. All the small efforts will eventually add up to substantial change,” she says. 

News Archive

Researcher takes home gold at international Famelab competition
2017-06-26

Description: Famelab competition Tags: Famelab competition

UFS researcher nabbed a top international award for
her ground-breaking metallurgical research in the UK.
Photo: Supplied

Recently, University of the Free State (UFS) Centre for Environmental Management master’s student, Tshiamo Legoale, was announced the FameLab International champion at the Cheltenham Science Festival in the United Kingdom. She is probing methods to use wheat as a gold hyper-accumulator – or, as she puts it, “grow gold from wheat”. The young researcher made South Africa proud by winning both the audience’s and the judges’ vote.

Coming back home a hero
“Winning was a surprise to me, because all 31 contestants had wonderful research. They all had really good presentations. I’m very grateful for all the support that I received from home. Social media showed me a lot of love and support. When I felt unconfident, they gave me ‘likes’ and that boosted my confidence a bit,” said Legoale about her win.

As South Africa celebrates Youth Month in June, Tshiamo represents hope for thousands of young South Africans to overcome difficult circumstances and follow careers in science.

The human impact is crucial, because Legoale’s win is not only scientific. It is also social and political. As a young female scientist in South Africa, she represented one of three African countries making it to the finals of FameLab, which has grown to one of the largest science communication competitions internationally.

With this in mind, Legoale says it may, in the end, be necessary to balance the needs of communities with the desire to increase yield. “Are we looking to make a fortune or are we looking to put food on the table?” she asks. “These are all things we consider when we conduct such research.”

World-class research from Africa
In South Africa, an estimated 17.7 million tons of gold is wasted. “All this gold was mined out previously, but tiny amounts remain in the dumps,” Legoale explains.

Her research focuses on the uses of wheat as a gold hyper-accumulator, which essentially means wheat plants are used to harvest gold from mine dumps. Simply put, the wheat is planted in the dumps, where enzymes found in the roots react with the gold and the plant absorbs it. The gold is then absorbed by every part of the plant, except the seeds, which means the next harvest can be used for food if need be.

“South Africa's world-champion young scientist, Tshiamo, represents all that is good about this country – brilliant, bright, and set for a fine future. I'm so proud that British Council SA, together with our partners SAASTA and Jive Media Africa, can help her along the way. Huge congratulations to her from all of us – it is a big win for Africa on the world stage,” said Colm McGivern, British Council South Africa Country Director.

The research represents a win on multiple levels. First, there are the obvious potential socio-economic benefits: food production, job creation, and phytomining is more economical than other contemporary mining methods.

Then there is safety. It is a more environmentally friendly practice than methods like heap leaching, carbon-in-leach or carbon-in-pulp. It is also safer for miners themselves, who will not be exposed to dangerous chemicals like mercury, which has been responsible for a great deal of toxicity in mine dumps. And it is safer for those living in the surrounds.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept