Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
20 July 2020 | Story Leonie Bolleurs | Photo Supplied
The view from one of the offices in the Marion Island research station, with fresh snowfall in the interior of the island in the background.

Liezel Rudolph, lecturer and researcher in the Department of Geography at the University of the Free State (UFS), is strongly convinced that the Southern Hemisphere’s past glacial cycles will provide valuable insights to help predict and prepare for future climate change. Climate is changing fast and the magnitude of change we have seen over the last 30 years has taken a hundred or several hundred years to occur in the past. 

It is not only temperatures that are rising, but changes in wind patterns, rain cycles, oceanic circulation, etc., are also observed. As we do not know how the earth will respond or adapt to such rapid and drastic changes in climatic patterns, this poses various threats.

Link between landscape responses and climate change

Rudolph focuses her research on reconstructing the past climate of Marion Island. 

She had the wonderful opportunity to visit the island for the past three years with study and project leaders, Profs Werner Nel from the University of Fort Hare and David Hedding from UNISA, she departed on a ship to Marion Island to conduct fieldwork.They published their research findings of fieldwork conducted in 2017 and 2018.  

According to Rudolph, research in Antarctica, the Southern Ocean, and islands such as Marion Island is very important. South Africa is the only African country with research stations that have the ability to explore these regions.

“Marion Island has many landforms that could only have been created by glacial erosional or depositional processes, with glaciers currently absent from the island. To determine when the island was last in a full glacial period, we date the formation ages of these landforms.”

“In the short time we have been visiting the island, it was impossible to notice any drastic changes in the island climate. That is why we use these very old landforms to tell us more about periods before humans visited the island,” she says. 

Rudolph believes that understanding the link between landscape responses and climate change of the past can help to better predict some of the climate change processes that are currently threatening the planet.

“There’s a principle in geography called ‘uniformitarianism’, whereby we assume that the earth-surface processes we observe today, are the same as those that have been active in the past,” says Rudolph.

As scientists, they thus look at evidence of past geomorphic processes (which remain in the landscape in various forms, e.g. residual landforms, stratigraphic sequences, etc.) to piece together what the past climate was like. In the same way, they also use this principle to predict how certain earth processes will change in the future, along with climate changes.

“In return, we understand how the climate and the earth’s surface interact, and we can better predict how the earth will respond to climate change,” Rudolph adds. 

Society to play its part in climate change

In the long run, we as the public should play our part in readying society for the effects of climate change. 

Rudolph says society can play a positive role in terms of climate change by educating themselves with unbiased, scientifically sound information on the true state of climate change and by responding within their own spheres of influence.

“Don’t leave everything up to politicians and policy. As the public, you can start to make progress by assessing the effects that climate change may have on your industry, business or society, and strategise on how to adapt your processes to deal with these changes.”

“Be responsible with our natural resources, reduce your waste, support local businesses that are sustainable, and volunteer at a local environmental protection/clean-up organisation. All the small efforts will eventually add up to substantial change,” she says. 

News Archive

UFS awards its innovative thinkers
2009-11-18

Here are, from the left: Prof. Van Wyk with first-prize winners Precious Setlaba and Themba Motsoeneng and Prof. Muriel Meiring, the students’ promoter.
Photo: Stephen Collett


The University of the Free State (UFS) recently announced the winners of the Innovation Fund Competition. This national competition, which is organised by the Department of Science and Technology aims to promote entrepreneurship through the commercialisation of the innovative ideas of young entrepreneurs.

Every participating educational institution first has an in-house competition in which a total prize money of R100 000 is at stake. At the UFS 14 business plans from students were received and evaluated by six external adjudicators. The three winners now have to take part in Phase II of the competition where 60 competitors from 20 universities will compete. The winners of the National Competition will receive prizes of up to R300 000. This money must be used for the development of the innovative idea with which the prize was won.

The first prize in the UFS’s Innovation Fund Competition of R50 000 was won by Themba Motsoeneng and Precious Setlaba from the Department of Haematology for the development of low-cost diagnostic assays for thrombotic diseases and bleeding disorders with the aim of supplying these test assays at a much lower cost to pathology laboratories all over the country. “This exciting idea appealed to many of the judges, especially because it can contribute to low cost health care in the country,” says Prof. Gerrit van Wyk, organiser of the Innovation Fund Competition at the UFS. The second prize of R30 000 was won by Charl Jaftha, MSc student in Physics. He has developed a low-cost hearing aid the size of a cigarette box. It contains a microphone and electronics to amplify the sound. The third prize of R20 000 was won by Adriaan Taylor and Jaco Brink, both MBA students. They designed a two-in-one lawnmower that would enable the average gardener with a bulky garden to shred the garden refuse and recycle it through composting or disposal through the normal disposal system. “One judge called this a novel use of existing technology,” says Prof. Van Wyk.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept