Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
20 July 2020 | Story Leonie Bolleurs | Photo Supplied
The view from one of the offices in the Marion Island research station, with fresh snowfall in the interior of the island in the background.

Liezel Rudolph, lecturer and researcher in the Department of Geography at the University of the Free State (UFS), is strongly convinced that the Southern Hemisphere’s past glacial cycles will provide valuable insights to help predict and prepare for future climate change. Climate is changing fast and the magnitude of change we have seen over the last 30 years has taken a hundred or several hundred years to occur in the past. 

It is not only temperatures that are rising, but changes in wind patterns, rain cycles, oceanic circulation, etc., are also observed. As we do not know how the earth will respond or adapt to such rapid and drastic changes in climatic patterns, this poses various threats.

Link between landscape responses and climate change

Rudolph focuses her research on reconstructing the past climate of Marion Island. 

She had the wonderful opportunity to visit the island for the past three years with study and project leaders, Profs Werner Nel from the University of Fort Hare and David Hedding from UNISA, she departed on a ship to Marion Island to conduct fieldwork.They published their research findings of fieldwork conducted in 2017 and 2018.  

According to Rudolph, research in Antarctica, the Southern Ocean, and islands such as Marion Island is very important. South Africa is the only African country with research stations that have the ability to explore these regions.

“Marion Island has many landforms that could only have been created by glacial erosional or depositional processes, with glaciers currently absent from the island. To determine when the island was last in a full glacial period, we date the formation ages of these landforms.”

“In the short time we have been visiting the island, it was impossible to notice any drastic changes in the island climate. That is why we use these very old landforms to tell us more about periods before humans visited the island,” she says. 

Rudolph believes that understanding the link between landscape responses and climate change of the past can help to better predict some of the climate change processes that are currently threatening the planet.

“There’s a principle in geography called ‘uniformitarianism’, whereby we assume that the earth-surface processes we observe today, are the same as those that have been active in the past,” says Rudolph.

As scientists, they thus look at evidence of past geomorphic processes (which remain in the landscape in various forms, e.g. residual landforms, stratigraphic sequences, etc.) to piece together what the past climate was like. In the same way, they also use this principle to predict how certain earth processes will change in the future, along with climate changes.

“In return, we understand how the climate and the earth’s surface interact, and we can better predict how the earth will respond to climate change,” Rudolph adds. 

Society to play its part in climate change

In the long run, we as the public should play our part in readying society for the effects of climate change. 

Rudolph says society can play a positive role in terms of climate change by educating themselves with unbiased, scientifically sound information on the true state of climate change and by responding within their own spheres of influence.

“Don’t leave everything up to politicians and policy. As the public, you can start to make progress by assessing the effects that climate change may have on your industry, business or society, and strategise on how to adapt your processes to deal with these changes.”

“Be responsible with our natural resources, reduce your waste, support local businesses that are sustainable, and volunteer at a local environmental protection/clean-up organisation. All the small efforts will eventually add up to substantial change,” she says. 

News Archive

Chemistry gets substantial grants
2013-06-10

 

At the experimental setup of the high temperature reduction oven for research in heterogeneous catalysis are, front from left: Maretha Serdyn (MNS Cluster prestige PhD bursar), Nceba Magqi (Sasol employee busy with his MSc in Chemistry) and Dr Alice Brink (Formal MNS Cluster postdoctoral fellow and lecturer in Inorganic Chemistry); back Profs Jannie Swarts (Head: Physical Chemistry), André Roodt, and Ben Bezuidenhoudt (Sasol Professor in Organic and Process Chemistry).
10 June 2013

Three research groups in the Department of Chemistry received substantial grants to the value of R4,55 million. The funding includes bursaries for students and post-doctoral fellows, mobility grants, running costs and equipment support, as well as dedicated funds for two young scientists in the UFS Prestige Scholar Programme, Drs Lizette Erasmus and Alice Brink.

The funding comes from Sasol, the THRIP programme of the National Research Foundation (NRF) and PetLabs Pharmaceuticals for the overarching thrust in Organic Synthesis, Homogeneous and Heterogeneous Catalysis. The programme has a broad focuse on different fundamental and applied aspects of process chemistry. Research groups of Profs Andreas Roodt (Inorganic), Jannie Swarts (Physical) and Ben Bezuidenhoudt (Organic / Process), principal members of the focus area of (Green) Petrochemicals in the Materials and Nanosciences Strategic Research Cluster (MNS Cluster) will benefit from the grant.

This funding was granted based on the continued and high-level outputs by the groups, which resulted in more than 40 papers featuring in international chemistry publications in merely the past year. A few papers also appeared in the top experimental inorganic chemistry journal from the American Chemical Society, Inorganic Chemistry. These high-impact papers address important issues in catalysis under the UFS Material and Nanosciences Research Cluster initiative, as well as other aspects of fundamental chemistry, but with an applied approach and focus.

Prof Andreas Roodt, Distinguished Professor and Chairperson of the Department of Chemistry, said the grants will enable the three research groups to move forward in their respective research areas associated with petrochemicals and other projects, and enable additional students in the department to benefit from it. It will also ensure that these groups can continue and maintain their research on different molecular and nano-scale materials. Current experiments include conversions under extremely high gas pressures (typical 100 times that in motor car tyres). This takes place at the molecular level and at preselected nano-surfaces, to convert cheaper feed-stream starting materials into higher value-added products for use as special additives in gasoline and other speciality chemicals.

The funding support forms part of the Hub-and-Spoke initiative at Sasol under which certain universities and specifically the UFS Department of Chemistry have been identified for strategic support for research and development. The department and the UFS gratefully acknowledge this continued and generous support from all parties concerned.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept