Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
20 July 2020 | Story Leonie Bolleurs | Photo Supplied
The view from one of the offices in the Marion Island research station, with fresh snowfall in the interior of the island in the background.

Liezel Rudolph, lecturer and researcher in the Department of Geography at the University of the Free State (UFS), is strongly convinced that the Southern Hemisphere’s past glacial cycles will provide valuable insights to help predict and prepare for future climate change. Climate is changing fast and the magnitude of change we have seen over the last 30 years has taken a hundred or several hundred years to occur in the past. 

It is not only temperatures that are rising, but changes in wind patterns, rain cycles, oceanic circulation, etc., are also observed. As we do not know how the earth will respond or adapt to such rapid and drastic changes in climatic patterns, this poses various threats.

Link between landscape responses and climate change

Rudolph focuses her research on reconstructing the past climate of Marion Island. 

She had the wonderful opportunity to visit the island for the past three years with study and project leaders, Profs Werner Nel from the University of Fort Hare and David Hedding from UNISA, she departed on a ship to Marion Island to conduct fieldwork.They published their research findings of fieldwork conducted in 2017 and 2018.  

According to Rudolph, research in Antarctica, the Southern Ocean, and islands such as Marion Island is very important. South Africa is the only African country with research stations that have the ability to explore these regions.

“Marion Island has many landforms that could only have been created by glacial erosional or depositional processes, with glaciers currently absent from the island. To determine when the island was last in a full glacial period, we date the formation ages of these landforms.”

“In the short time we have been visiting the island, it was impossible to notice any drastic changes in the island climate. That is why we use these very old landforms to tell us more about periods before humans visited the island,” she says. 

Rudolph believes that understanding the link between landscape responses and climate change of the past can help to better predict some of the climate change processes that are currently threatening the planet.

“There’s a principle in geography called ‘uniformitarianism’, whereby we assume that the earth-surface processes we observe today, are the same as those that have been active in the past,” says Rudolph.

As scientists, they thus look at evidence of past geomorphic processes (which remain in the landscape in various forms, e.g. residual landforms, stratigraphic sequences, etc.) to piece together what the past climate was like. In the same way, they also use this principle to predict how certain earth processes will change in the future, along with climate changes.

“In return, we understand how the climate and the earth’s surface interact, and we can better predict how the earth will respond to climate change,” Rudolph adds. 

Society to play its part in climate change

In the long run, we as the public should play our part in readying society for the effects of climate change. 

Rudolph says society can play a positive role in terms of climate change by educating themselves with unbiased, scientifically sound information on the true state of climate change and by responding within their own spheres of influence.

“Don’t leave everything up to politicians and policy. As the public, you can start to make progress by assessing the effects that climate change may have on your industry, business or society, and strategise on how to adapt your processes to deal with these changes.”

“Be responsible with our natural resources, reduce your waste, support local businesses that are sustainable, and volunteer at a local environmental protection/clean-up organisation. All the small efforts will eventually add up to substantial change,” she says. 

News Archive

Lithium-ion batteries research set to improve ordinary lives
2016-02-11

Description: Dr Lehlohonolo Koao  Tags: Dr Lehlohonolo Koao

Dr Koao is making a much-needed contribution in improving lives of ordinary people through his research on lithium-ion batteries.

The future of relevant and top-notch scientific research at the Qwaqwa Campus is in good hands. Dr Lehlohonolo Koao is one of the five members of the Vice-Chancellor’s Prestige Scholars Programme (PSP) on the Qwaqwa Campus.

The need to improve the efficiency of heating mechanisms in his immediate community in Qwaqwa, and the support he receives from the PSP, have become catalysts for his current research project on lithium-ion batteries. According to Dr Koao, the study will focus on producing batteries that last longer, store more energy, are cheaper to manufacture, and are environmentally friendly when being disposed of. These are key factors in solar energy.

‘’The majority of households in my neighbourhood have benefited from the government’s project of providing households with solar panels to help with lighting, cooking, and heating without worrying about the ever-increasing electricity costs,’’ said Dr Koao.

‘’Since my arrival in the area, I have realized that the heat absorption rate of the batteries used by solar panels is not enough. As a result, these batteries also lack enough power to sustain the supply throughout the day, especially on a cloudy day,’’ he said.

His research project focuses on improving the efficiency of lithium-ion batteries that are now commonly used in portable electronics, such as cell phones and laptops. This kind of battery is rapidly replacing the usual lead-acid batteries. Dr Koao’s determination to contribute towards a safer and more efficient heating absorption system has made him move away completely from his PhD study on lighting material.

‘’My previous study was on reducing the power usage on domestic and industrial lights as they use more electricity. This study, on the other hand, will enhance power retention in the batteries for improved daily life since cell phones, solar panels, and laptops, to mention only a few, are now a way of life,’’ he added.

Dr Koao is a Senior Lecturer in the Department of Physics, where he specializes in solid state materials.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept