Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 April 2019 | Story Valentino Ndaba | Photo Valentino Ndaba
Andrew Lane
Mining the fourth industrial revolution way is the future says industry expert, Andrew Lane.

Innovation is imperative for the future of mining in South Africa. Industry expert, Andrew Lane proposes that leveraging on new information, mining technologies and energy knowhow, which are the hallmarks of the fourth industrial revolution, should set the scene for success.

Lane who is Africa Energy and Resource Leader at Deloitte, engaged students at a recent guest lecture hosted by the University of the Free State’s Business School on the Bloemfontein Campus. “The future is intelligent mining. It’s not just about technology; it’s about changing the way you do business,” he said.

Transforming traditional to trailblazing
“What gives you sustainable competitive advantage is the rate at which you innovate,” said Lane. Design paradigm shifts in the South African mining industry may have resulted in about 100 000 job losses during the past four years. However, mining companies stand to achieve significant gains through applying innovation.

Despite most of South Africa’s mines nearing the end of their lives, mining remains a large employer and investor attractor which ensures that the country holds a competitive advantage in the global economy. Lane is adamant that, “even though we have declined from 20% to 5% in terms of GDP contributions, mining remains a large contributor to export earnings”.

Reaching resource-rich regions
While some physical resources are inaccessible using current technology, “new mineral-processing technologies help tap into previously uneconomical mineral deposits”, according to Lane. In addition to the environment, 3D visualisation cameras can track employees and equipment in the bowels of the earth.

More mining, less loss
Integrating mining, energy, and information technology will ensure that companies reduce people, capital and energy intensity, while increasing mining intensity. The impossible can be achieved if technology is used well for developmental outcomes, employment, and improving standards of living.



News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept