Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 August 2019 | Story Eugene Seegers
Simonè Nel (Read More)
“When looking at the simply amazing female leadership emerging at the UFS — academic as well as administrative — I see hope and growth,” says Simoné Nel, a member of the management team on the South Campus.

Simoné Nel heads up the Support Services division on the UFS South Campus. Despite challenges during her youth, she learnt the power of strong examples to look up to, and still lives by the mantra she learnt in primary school from her Drum Majorettes coach. She believes that inspiration can come from mundane sources, day-to-day conversations, or even her children; she is the mother of a 10-year-old son and a 7-year-old daughter. In fact, her best example of teamwork comes from her experiences as mother: “Just watch what happens when a mother is calling frantically for her child if he slips from her grip; EVERYONE helps to find him!”

Tell us about your childhood: What are some of the lessons you learned early on? 

Growing up in the Western Cape, I had a primary school teacher and coach who taught me the value of the saying: “It is not the hours you put in, but what you put into the hours.” I still live by this; trying to make the most of every hour. Both of my parents passed away at a fairly young age, which made this just so much more true. USE your given time and LIVE as much as possible! Take joy in as many experiences as possible – even if it is a seemingly negative experience.

What inspires you?

Intelligent conversations, great music, my daughter’s energy, family time, and compassion in action. Simoné says her definition of compassion in action is: People like the rest of us with full-time jobs, dedicating every little spare time to helping women/children/families in need or distress; friends involved with finding forever homes for abandoned pets; the regular guy in the street helping a child stand up after falling from the curb.

How do you envision the UFS of the future — especially with regard to women's issues? 

When looking at the simply amazing female leadership emerging at the UFS – academic as well as administrative — I see hope and growth. Just page through the latest issue of Dumela or browse our UFS website: These are strong women; not afraid of embracing who they are and with a need to rise up. I am part of an all-girls team at the South Campus (coincidentally!) and we support each other in every possible way. Whether I know them as Prof, Doc, Ma’am, Mom, Sister, Vriendin – they are all Wonder Women to me.

Tell us something no-one (or only a few people) know about you?

I am in love with (a very broad scope of) music, from Beethoven on full volume to some serious rock. Yes, I sing along to my heart’s content. I am also from Scottish decent and admire my cousins in full costume (kilt and all!).

What does ‘success’ mean to you?

My definition of success has certainly taken a 180-degree turn. When I was still a young student, I longed for academic success and to pursue my PhD studies as soon as possible. Now I am a mom and wife — first and foremost — and still working on my master’s degree. At the end of a fruitful day at the office, a glass of wine with my husband, and hugs, kisses, and laughs from my children, I’d say I had a most successful day.

What ‘words of wisdom’ do you always fall back on? 

I learnt this early on, but had it confirmed in JRR Tolkien’s The Fellowship of the Ring: There is always HOPE.

Lastly, my mom taught me this gem: ‘A little kindness goes a long way.’

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept