Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 July 2019 | Story Leonie Bolleurs
Edwin Skhosana
Edwin Skhosana is working hard to become a successful and competent actuary one day. With him is his lecturer, Dr Michael von Maltitz.

Edwin Skhosana, an Actuarial Sciences student, was described by his lecturer, Dr Michael von Maltitz of the Department of Mathematical Statistics and Actuarial Science, as ‘very quiet’ in his Causal Inference class. 

This may sound like a compliment, but it’s not.

For Dr Von Maltitz, being quiet is definitely not encouraged – not with the new teaching methods applied in class.

“See, my class is all about engagement – getting the students to watch videos on the topics, read about the methods in question, and then come to class to grill me about things they don’t understand. This change in teaching method is extremely disconcerting for many Mathematical students, who have up until now only been taught in the ‘memorise-regurgitate’ form they had ever since the start of high school,” he explains.

Future success


“My goal is to get the students to a level of understanding where they can sit down with me or with an expert in the field and have a conversation about the Mathematical Statistics topics that I teach. This is a very difficult task in such a technical module, and few students ever feel comfortable enough to engage with me actively in class in this way,” Dr Von Maltitz points out. 

Edwin is working hard towards applying the skills and knowledge he has obtained at university to become a successful and competent actuary one day. 

An important turning point was when it dawned on him how the things discussed in class could find an important practical application in so many fields.  

“This suddenly drove a spontaneous fascination in my mind that led me to engage with Dr Von Maltitz,” the previously quiet Edwin explains.

And everything changed.

Desperate to learn

Dr Von Maltitz explains: “Edwin came to my office to ask some questions. The incredible thing was that he sat down, and a conversation about the Mathematics, the foundations, and the methods just flowed between us. I have seldom had such an insightful chat about my module with a student. It was like a cascade of information just fell into place for Edwin.”

Although he sometimes still experiences his studies as challenging and grapples to adapt to the various styles of lecturing from different lecturers, Edwin now has hope for his class in Causal Inference. 

“I think Dr Von Maltitz’s way of presenting in class is excellent. It is, however, hard to grasp if you are still anchored in the old way of cramming, because he wants you to understand and be able to apply what he teaches,” says Edwin.

“It was just wonderfully refreshing to see someone so desperate to learn something (rather than just wanting to get a degree), and then actually managing to turn around a bad semester mark into such a river of understanding,” Dr Von Maltitz concludes.

Dr Michael von Maltitz
Dr Micheal von Maltitz

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept