Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 March 2019 | Story Thabo Kessah | Photo Thabo Kessah
Thokozile Thulo
Thokozile Thulo says the UFS has changed its focus in supporting students with disabilities.

The Centre for Universal Access and Disability Support (CUADS) has recently opened a permanent office on the Qwaqwa Campus The centre aims to ensure that the University of the Free State increasingly becomes a universally accessible higher-education institution which embraces students with various disabilities.

Thokozile Thulo, CUADS Assistant Officer at Qwaqwa said: “Our focus has changed from ‘special’ accommodation for individuals to the creation of a learning environment that is welcoming and empowering to all students. Integrated learning and education methodologies and processes are being researched and developed to create more awareness among lecturing staff. This incorporates universal design, faculty instruction and curricula.” 

The CUADS office assists students to gain access to study courses, learning materials, various buildings and residences, computer facilities and specialised exams and tests. For visually-impaired students, study material and textbooks in Braille, audio, e-text or enlarged format are provided. 

The office also supports students with various psychosocial and chronic conditions such as epilepsy and panic disorder, as well as learning difficulties such as dyslexia and hyperactivity. “In addition, we support students with special arrangements such as extra time for tests and exams,” said Thokozile.



News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept