Latest News Archive

Please select Category, Year, and then Month to display items
Years
2017 2018 2019 2020
Previous Archive
03 April 2019 | Story Xolisa Mnukwa | Photo Vhugala Nthakheni
Uhuru Qwaqwa Arrival
The #UFSWalkToUhuru team arrives at the UFS Qwaqwa Campus on Friday 22 March.

The University of the Free State (UFS) Division of Student Affairs, in collaboration with the UFS Office for International Affairs, have joined hands to drive a fundraising and student-accessibility initiative dubbed, ‘The Walk to Uhuru’ (#UFSWalktoUhuru), which is aimed at raising funds and advocating for the educational rights of the less privileged. 

The project aims to raise funds in excess of R2 million from the public and stakeholders affiliated with the UFS (Kovsie staff and students). The project derives from the 2018/2019 UFS Institutional Student Representative Council (ISRC) mandate ‘Students Must Graduate’. The ISRC mandate aims to source funding opportunities for UFS students to register, and to complete their studies across all three campuses in 2020 and beyond.

The first leg of the project, a 350 km walk from the Bloemfontein to the Qwaqwa Campus, has already taken place and concluded on Friday, 22 March 2019 as planned. The #UFSWalkToUhuru team successfully completed the first leg of their journey to academic freedom for financially disadvantaged students at the UFS. The Uhuru team is now focusing its attention on the second leg and is determined to take on Mount Kilimanjaro (Uhuru) from 20 June to 20 July 2019.

The team sat down for a debriefing session to unpack the overall experience and result of the first half of the initiative, and they all agreed that the walk to Qwaqwa was an enlightening experience. It was a walk that comprised learning opportunities, team building, and goal crushing.

According to Rethabile Motseki, member of the #UFSWalkToUhuru team, the walk to Qwaqwa made a significant impact on the project, as the university community is now aware of the significant goals that the team is trying to accomplish. The team has also resumed their fitness-training programme to ensure that they are ready to take on the Uhuru climb in June.

A media briefing will take place shortly (date to be confirmed) to detail the ongoing fundraising initiatives rolled out by the #UFSWalkToUhuru team.  We implore you, and the nation as a whole, to help establish a better future for disadvantaged UFS students by donating to the initiative.

Students, staff, and the public can support the cause and make contributions/donations to the initiative by visiting the UFS Walk to Uhuru #givengain account page.

For more information, contact UFS SRC President, Sonwabile Dwaba, on DwabaSJ@ufs.ac.za  or Rethabile Motseki on MotsekiR@ufs.ac.za  

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept