Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 May 2019 | Story Zama Feni | Photo Charl Devenish
Dr Quinton Meyer and Marlena Visagie
National Control Laboratory Deputy Director, Dr Quinton Meyer (right), and Marlena Visagie, Quality Assurance Manager, at the laboratory within their facilities at the University of the Free State.

The University of the Free State-based National Control Laboratory for Biological Products (NCL) has maintained its esteemed status as a pharmaceutical testing laboratory after the South African Accreditation System (SANAS) further endorsed its quality-management systems as of high standard according to the International Standards Organisation’s requirements.

The Director of the NCL, Professor Derek Litthauer, said their laboratory – which is also approved by the World Health Organisation (WHO) – has again achieved the international testing standards. The cherry on top was that the NCL also received a certificate of Good Manufacturing Compliance (GMP) from the South African Health Products Regulatory Authority (SAHPRA). 

NCL is for Africa and the World 

Some of the factors that make the NCL an esteemed institution, is the fact that it is one of 12 laboratories worldwide to perform vaccine testing for the WHO; the NCL is the only vaccine-testing laboratory in the country that performs the final quality-control testing of all human vaccine batches marketed in South Africa on behalf of SAHPRA. 

For example, Prof Litthauer said that the influenza vaccine batches currently available on the South African market, were tested by the NCL for quality before authorising their release for sale to the public. This process is followed for all human vaccines used in SA.

 “In our role as vaccine-testing laboratory for the WHO, the NCL helps to ensure that the vaccines purchased through the WHO prequalification programme for international distribution to resource-limited countries, meet the high standards of quality, safety, and efficiency. 
The NCL was one of the first full members of the WHO NCL Network for Biologicals, which consists of full and associate members of regulatory authorities from more than 30 countries.

The NCL systems are world-class

Prof Litthauer said this achievement is recognition that their laboratory complies with specific international standards with respect to its quality-management system. 
“In practice, it means that the laboratory has all the quality systems in place to ensure high-quality test results. The GMP certification is a further step, meaning that laboratory testing is on the expected level for any pharmaceutical testing laboratory and manufacturer. It is a very strict certification.”

He further mentioned that the NCL is also licensed as a pharmaceutical manufacturer. “Although we do not manufacture, we have to comply with manufacturing standards.”
“It is rare for a pharmaceutical testing laboratory (such as the NCL) outside of a manufacturing context to qualify for both certifications. It means that the NCL complies with exceptionally strict standards for pharmaceutical labs anywhere in the world,” he said.
The certification provides the South African Health Products Regulatory Authority, the World Health Organisation, and other national control laboratories around the world, with the confidence that the test results from the NCL can be trusted.


There can be no compromise for quality 

The NCL Quality Assurance Manager, Mrs Marlena Visagie, said, “It is essential that the NCL complies with the highest international quality-assurance standards to ensure that all the lot-release operations, such as manufacturing review and quality testing, are performed in a reliable and reproducible manner.”

“There can be no compromise when it comes to the quality of medicines which are made available to the public,” she said.

“What makes this special, is that the NCL does not only comply with international ISO/IEC standards for pharmaceutical testing, but also with the additional GMP standards required by a pharmaceutical manufacturer. This means that the NCL must ensure that all its operations, including everything from the way documents are compiled and stored, to the maintenance of equipment and infrastructure as well as staff competency, are performed according to international guidelines.”

All NCL staff share vision of excellence

Prof Litthauer said the NCL has a staff complement of 15 technical, administrative, and support staff.  Four staff members have PhDs, and the rest of the technical staff have master’s or bachelor’s degrees or are trained as medical technologists. “At the moment, our biggest problem is to get enough suitable space to expand our testing,” he said.

Prof Litthauer said, “All the staff members at the NCL share the vision of excellence, which makes this kind of achievement possible.”
The NCL will host the third annual meeting of the WHO NCL Network in November of this year and will then be reassessed again by the WHO as part of the normal three-year cycle of assessments.  

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept