Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 October 2019 | Story Leonie Bolleurs | Photo Anja Aucamp
Dr Brain van Soelen and Prof Pieter Meintjies
UFS scientists, Prof Pieter Meintjes and Dr Brian van Soelen, are part of the prestigious H.E.S.S. collaboration that recently published in Nature Astronomy.

Think of an object with a mass exceeding that of the Sun, squeezed into a volume of a sphere with the radius of a city like Bloemfontein. This very dense, compact object, known as a pulsar, is also a great source of energy. According to Physics Professor, Prof Pieter Meintjes, this pulsar (neutron star produced in supernova explosion) is also a key element of a recently submitted paper in Nature Astronomy.

Prof Meintjes and Dr Brian van Soelen, Senior Lecturer, both from the Department of Physics at the University of the Free State (UFS), were part of the High Energy Stereoscopic System (H.E.S.S.) collaboration of 220-plus scientists worldwide who worked on the paper Resolving the Crab pulsar wind nebula at tera-electronvolt energies, published in the prestige journal Nature Astronomy. 

According to Prof Meintjes, the fact that the paper was accepted for publication in Nature Astronomy testifies of the importance of this finding in the high-energy astrophysics community.

Powerful generators of electricity

He elaborates on the study: “The name pulsar originates from the fact that rotating neutron stars produced in supernova explosions produce beams of radiation, much like a lighthouse. Every time the beam intersects the observer’s line of sight, the observer receives a pulse of radiation.”

“As a result of this enormous mass squeezed into a small volume, these objects have the same density as that of an atomic nucleus. These objects (very dense pulsars) spin very rapidly and have enormous magnetic fields; for example, the pulsar at the centre of the Crab Nebulae spins around its axis once every 33 milliseconds (millisecond: one thousandth of a second) and possesses a magnetic field strength of the order of one tera-Gauss (tera – million x million). For comparison, the average strength of the Earth’s magnetic field is 0.5. Gauss and the magnetic field strength on the Sun ranges between 1 000 and 4 000 Gauss.”

“Because of this very super-strong rapid-spinning magnet, enormous electric fields are induced that can accelerate particles such as electrons and protons to energies in excess of one tera-electronvolt (optical light that are emitted by an ordinary lightbulb has energies of the order of one electronvolt).”

Prof Meintjes continues: “This means that these fast-rotating neutron stars are extraordinary powerful generators of electricity, which fills the surrounding cloud (supernova remnant) with super-high energy-charged particles that can produce, in turn, very high energy gamma rays through various processes such as synchrotron radiation and inverse-Compton radiation, to name a few.”

H.E.S.S. collaboration 

Above one tera-electronvolt, the gamma rays are detected by huge ground-based telescopes such as H.E.S.S., utilising the Earth’s atmosphere.

“When these high-energy gamma rays enter the atmosphere, they produce showers of super-relativistic particles that produce Cherenkov light – detected by the telescope. The technique is called the Atmospheric Cherenkov Technique (ACT).”

HESS
The High Energy Stereoscopic System. (Photo: Supplied)

“The H.E.S.S. gamma-ray collaboration is but one collaboration that has studied this source intensively over the past couple of decades or so.  Being the most powerful gamma-ray telescope facility currently operational, very careful analysis of the data managed to reveal that the gamma-ray emitting region inside the nebula is about 10 times bigger in size than the region where the x-rays are emitted within the nebula.” 

“This has solved a long-standing question as to how big the gamma-ray emitting region within these supernova remnants are, compared to the region where the x-rays, for example, originates,” says Prof Meintjes. 

Both Prof Meintjes and Dr Van Soelen are members of this prestigious H.E.S.S. collaboration. Their participation in this project, together with scientists from universities such as the University of Oxford, the University of Leicester, and the University of Bordeaux, opens up valuable research opportunities for UFS postgraduate students to enter the international stage and interact with the best scientists in the world.

They are also members of the editorial board responsible for the internal review of research papers before being submitted to more prestigious journals, for example, Nature Astronomy. Dr Van Soelen is also a coordinator of multi-wavelength follow-up observations within the H.E.S.S. collaboration. 

This is the second time that Prof Meintjes published in Nature Astronomy. Previously, he was co-author of a paper on emission from a white dwarf pulsar, showing that fast-rotating white dwarf stars could in fact mimic emission from neutron star pulsars. He developed the theoretical model reported in that paper, explaining the multi-wavelength emission from radio to X-ray energies.


News Archive

Culture contributes to success of UFS rugby teams
2015-12-15

The Sevens team of the University of the Free State followed in the footsteps of the Shimlas when the team was crowned national champion. The Kovsies Sevens team beat Tukkies April in the final of the Varsity Sevens tournament. Photo: Supplied. 

The University of the Free State (UFS) Rugby Club has succeeded once again in creating a culture of values.

Marius van Rensburg, Chairman of the UFS Rugby Club, believes this was one of the reasons why Kovsies had so many rugby successes this year.

The UFS knows that money, which is more abundant at bigger universities, won't change the club into a rugby force, but "there is something special here," he said.

Van Rensburg added that the success of Shimlas, who won the Varsity Cup for the first time, also helped to build a winning culture.

Seven finals

Seven of the UFS Rugby Club's teams played in finals during 2015.

Shimlas beat the Pukke in the Varsity Cup final at Shimla Park on the Bloemfontein Campus.

The Kovsie Young Guns (against Tukkies) and Vishuis (Mopanie from Tukkies) got stuck in Bloemfontein in Varsity Cup finals.

The Shimlas won Section B of the USSA tournament in Johannesburg (against Madibaz in the final).

A strong Irawa rugby team beat Shimlas in the City Cup.

The Kovsie Sevens team was crowned as the Varsity Champions in Cape Town after beating Tukkies in the final. The team was beaten by Maties in the final of the USSA Sevens tournament in George.

Shimlas lays foundation

According to Van Rensburg, the Varsity Cup triumph by Shimlas laid a good foundation.

“After what happened in the Varsity Cup, the winning culture kind of washed over the other teams,” he said.

He also thinks the 2015 successes didn't happen overnight, but that the club managed to bring back good values. He feels that Franco Smith, the former Shimlas coach who is the Cheetahs’ current coach, also played an important part.

Greater pressure in 2016

In 2016, the UFS's rugby teams will have a greater target on their backs.

Van Rensburg agrees that there will be greater pressure, but the structures are in place.

He feels that Varsity Cup success goes together with a touch of luck, of which Shimlas had some this year.

“Looking at the draw, Shimlas will play their first two matches away against Ikeys and Tukkies. Therefore, after two matches, one might have no league points, and that would place the team under immediate pressure.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept