Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 July 2020 | Story Nitha Ramnath | Photo UFS photo archive

The Department of Business Management within the Faculty of Economic and Management Sciences is one of four successful recipients of the Nurturing Emerging Scholars Programme (NESP), which aims to recruit honours graduates who demonstrate academic ability and express an early interest in the possibility of an academic career. 

 “The NESP is a mechanism that addresses a potential shortcoming in the department in the medium to long term. Most of the academics in the department specialise either in entrepreneurship or marketing. As such, the availability of academics with interdisciplinary business knowledge who can teach and do research across the different sub-fields of business management is limited,” says Prof Brownhilder Neneh, Associate Professor in the Department of Business Management.

Once graduates enter the programme – as NESP master’s graduates they form part of a resource pool from which new academics can be recruited. 

Prof Neneh continues: “Considering the imminent retirement of academics in the department, the NESP provides an opportunity to recruit an academic who is able to work with experienced academics, gain experience, and ‘prepare’ the person to become an expert across the different fields in the department.”

“This programme would assist in succession planning within the department as well as training individuals within academia,” she says. 

According to Prof Neneh, access to this funding opportunity will further strengthen and expand the path that the department has embarked upon as far as striving for excellence in teaching, research, and community engagement is concerned, thereby contributing to address key societal challenges. “Appointing an NESP candidate would be an ideal opportunity to recruit an academic who will be able to work with the senior staff and gain experience and teaching/research competencies relevant to the 4IR, and ‘prepare’ the person to become the business management expert in the department,” she says.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept