Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 March 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Team from the UFS Microbiology department
From the Department of Microbiology and Biochemistry, were from the left, front: Dr Mariana Erasmus, Prof Martie Smit, Samantha McCarlie; back: Dr Carmien Tolmie; Samantha McCarlie, Prof Dirk Opperman, and Prof Robert Bragg. They believe publishing in high-impact factor journals reflects the quality of research delivered by the department.

Researchers in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS) published their work in four impact factor eleven journals in 2019/2020, and a fifth was accepted for publication in a journal with impact factor twelve in 2020. 

Two articles were published in Nature Communications, one in Drug Resistance Updates and one in Natural Product Reports. A fifth article is already available as an accepted article at Angewandte Chemie. Researchers in the department work on very diverse topics, as reflected in the titles of these articles: ‘A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H2O2’; ‘Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds’; ‘The genome of a subterrestrial nematode reveals adaptations to heat’; ‘Molecular basis of bacterial disinfectant resistance’; and ‘CYP505E3 – a novel self‐sufficient ω‐7 in‐chain hydroxylase’.

Publishing in journals with a high impact factor is quite an achievement. Publishing in a journal with an impact factor of 3 is considered good and in most fields of study, publishing in journals with an impact factor of 10 or more is regarded as excellent. Impact factors are used to measure the importance of a journal by counting the number of times articles were cited in a certain time period. 

According to Prof Martie Smit, Head of the department, this is a reflection of the quality of research delivered by the department. “It is difficult and takes a lot of time and resources to publish in such high-impact journals.”

Contributing to their success in the department, is the work of their collaborators as well as the quality international postdoctoral researchers the department manages to attract with their emphasis on quality research.

Another highlight in the publication of these articles was that members of the department were corresponding authors of four of the five articles – meaning that the research was conducted in and driven from their laboratories, with UFS researchers taking primary responsibility for the preparation of the manuscripts and communicating with the editors of the journals.

Impacting society

Besides publishing in journals with high impact factors, these researchers are also making a difference to society. Prof Robert Bragg contributed to the study focusing on quality disinfectants. 

We are all aware of the danger of developing resistance to antibiotics. According to Prof Bragg, it is estimated that by 2050, 25 million people could be dying from antibiotic resistance-related bacterial infections per year. He says one of the best options to control diseases – not only bacterial diseases, but also viral diseases such as the Covid-19 outbreak – is good biosecurity and the use of good-quality disinfectants.

Researchers working on this study are trying to understand the development of resistance in bacteria to disinfectants. “This research group is currently investigating the ways in which bacteria become resistant to different high-quality disinfectants. The aim of this work is to discover new methods of resistance and then try to prevent bacteria from becoming resistant to commonly used disinfectants. One of the first aspects that needs investigation is to understand the methods of transfer of genetic information between bacteria. This work formed the basis of the review article written with master’s student Samantha McCarlie on transfer of genes that could code for disinfectant resistance in bacteria,” says Prof Bragg.

Studies about a nematode species discovered 1,3 km deep in a gold mine in Welkom and its ability to survive in extreme environments, made headlines about nine years ago. More extensive research has been performed on deep-space exploration of nematodes surviving extreme environments and were published in Nature Communications. Dr Mariana Erasmus, Assistant Director in the department and Technology Innovation Agency/UFS Saense Platform manager, says the study published in 2019 reveals these nematodes’ adaptation to heat and heat tolerance in an unusual ecosystem isolated from the surface biosphere. More studies on this can help humans learn how to adapt to a warming climate. 

TIA is an agency of the Department of Science and Innovation.

Three of the articles are from the Biocatalysis and Structural Biology group of Prof Dirk Opperman, Prof Martie Smit, and Dr Carmien Tolmie. Biocatalysis is a form of green chemistry that aims to produce chemicals in an environmentally friendly and sustainable manner. The research of the group focuses on using enzymes (proteins performing specialised chemical reactions) to insert an oxygen atom at a specific position in a starting material. Such reactions are difficult to perform using purely organic chemistry. 

The end products are value-added compounds of interest to, among others, the flavour and fragrance industry, which place a high premium on natural products. The work on the novel in‐chain hydroxylase was also patented internationally, because it can be used for the synthesis of a valuable flavour compound.
 
More to come

Besides the commitment of the team in Microbiology, it took multiple institutions, dedicated postdoctoral students, as well as time and money to publish this number of articles in high-impact journals in just over a year. With its 100-plus researchers varying from student researchers to NRF-rated scientists, everyone in the Department of Microbial, Biochemical and Food Biotechnology strives to produce high-quality research. 

And they promise, there is more to come. Watch this space …

News Archive

Four modernised controlled environment cabinets inaugurated
2006-07-27

Photographed in a controlled environment cabinet were at the back from the left:  Mr Adriaan Hugo (head of the UFS Electronics and Mechanisation Division), Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences at the UFS) and Prof Koos Terblans (lecturer at the UFS Department of Physics).  In front is Mr Koos Uys (engineering consultant from Experto Designa who helped with the cooling systems of the cabinets).
Photo: Leonie Bolleurs

Different look for research in controlled circumstances at the UFS  

Research in controlled circumstances at the University of the Free State (UFS) turned a new page today with the inauguration of four modernised controlled environment cabinets of the Department of Soil, Crop and Climate Sciences.

“The controlled environment cabinets, which are situated next to the glass houses on the eastern side of the Agriculture Building on the Main Campus in Bloemfontein, were installed in the early 1980’s.  The cabinets, used for research purposes in controlled circumstances by the UFS for many years, became dysfunctional and needed to be repaired and put into use again,” said Prof Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS.

“The cabinets are used by the agronomics, horticulture and soil science divisions of the Department of Soil, Crop and Climate Sciences to control factors such as the temperature, the intensity and quality of light, synthesis and humidity.  This is done 24 hours a day, with hourly intervals,” said Prof Van Schalkwyk.

The cabinets are ideally suited to determine the joint and separate effects of these factors on the growth of plants.  The adaptability of plants to climate can also be investigated under controlled circumstances.  All of this leads to a better understanding of the growth and development process of plants, more specifically that of agricultural crops. 

“The effect of these environmental factors on the effectiveness of insect killers such as fungus killers, insecticide and weed killers can also be investigated and can help to explain the damage that is sometimes experienced, or even prevent the damage if the research is timeously,” said Prof Van Schalkwyk.

A new cabinet can cost between R2-3 million, depending on the degree of sophistication.  “Although controlled environment cabinets have been used for agricultural research for a long time, it has become costly to maintain them     and even more impossible to purchase new ones,” said Prof Van Schalkwyk.

According to Prof Van Schalkwyk the cabinets were re-built by die UFS Electronics and Mechanisation Division.  Some of the mechanisms were also replaced and computerised.   

“The re-building and mechanisation of the cabinets were funded by the faculty and because the work was done by our own staff, an amount of about R1 million was saved.  The maintenance costs will now be lower as the cabinets are specifically tailor made for our research needs,” said Prof Van Schalkwyk.

Where all monitoring was done manually in the past, the cabinets can now be controlled with a computer.  This programme was designed by Prof Koos Terblans from the UFS Department of Physics. 

According to Prof Van Schalkwyk the modernisation of the cabinets is part of the faculty’s larger strategy to get its instruments and apparatus up to world standards.  “With this project we have proved that we can find a solution for a problem ourselves and that there are ways to get old apparatus functional again,” said Prof Van Schalkwyk.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
26 July 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept