Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 May 2020 | Story Prof Danie Brand | Photo iStock

We are indeed privileged to have this paper from Prof Toyin Falola to include in our celebrations of Africa Day. Toyin Falola is a world-renowned African. A scholar of African history and African studies, he holds the Jacob and Frances Sanger Mossiker Chair in the Humanities at the University of Texas, Austin. He has published, as author or editor, more than 100 scholarly books on topics ranging from diaspora, migration, empire and globalization to intellectual history, international relations, religion and culture. He has been awarded seven honorary doctorates and has received, among many other awards, the Distinguished Africanist Award from the African Studies Association, the Ibadan Foundation Award for Professional Excellence in Scholarship and the Cheikh Anta Diop Award for Excellence in African Studies. He served as Vice President of UNESCO’s International Scientific Committee, Slave Route Project from 2011 – 2015 and currently is a member of the Carnegie African Diaspora Fellows Programme and the International Committee of the Thabo Mbeki African Leadership Institute at UNISA.

In this wide-ranging paper, originally presented as keynote address at the Visions of African Unity (1930s – 2018) conference at the University of the Free State, Prof Falola begins with a tour of the intellectual history of ideas of African Continentalism (Pan-Africanism / African Unity), from Henry Sylvester Williams, through WEB du Bois, Marcus Garvey, George Padmore and Julius Nyerere, to Kwame Nkrumah. He then describes the current institutional landscape of African unity and present-day intellectual versions of African Continentalism. Asking, and answering the question ‘Why must Africa unite?’, he then proceeds, on the basis of a consideration of more contemporary intellectual versions of African continentalism such as Black Consciousness, Black Nationalism, Afropolitanism, and now Afrofuturism (which he depicts as ‘ideological dispensations of true African cultural recovery and re-orientation’), to propose a disaggregated approach to contemporary African unity that is not fixated on global-Northern models. This means that unity should (re)start small, working territorially from regional units toward a continental unit, on the one hand; and on the other, seeking unity and cooperation around discrete substantive themes, from the more obvious and traditional, such as economic policy, global politics and a reformed unified political and military system, to the less, such as common educational policy, synergizing science and technology with African culture(s) and language, culture and literary exchange.

We thank him for the gift.

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept