Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2020 | Story Andre Damons | Photo Supplied
Heinrich Janse van Rensburg’s is a 5th year medical student from the University of the Free State whose photo was highly commended at the Imperial College London’s Global Creative Competition: Medical Student Responses to COVID-19.

A late-night photo taken through a window at the Pelonomi hospital by a final-year medical student from the University of the Free State (UFS) was highly commended at the first Global Creative Competition: Medical Student Responses to COVID-19.

The competition, held by the Imperial College London, received more than 600 entries from more than 52 countries. The competition was held to bring together the global community of medical students to submit their creative responses to COVID-19 and to provide a platform for them to reflect on their personal and professional experiences during this challenging time.

Medical students from around the world could enter in two categories; visual and literary, and the winners were announced during a Global Awards Ceremony on 14 October.

Meaning behind the photo

Heinrich Janse van Rensburg’s late -night photo highlights the economic inequality that persists in South Africa. The photo was taken from the Pelonomi Hospital which is located in Heidedal, Bloemfontein, and shows the old, forsaken Dutch Reformed church in the foreground, shacks in the background with smoke billowing from the dwellings, where up to six people live in one room trying to stay warm during winter. They are built so close to each other that there can be no talk of effective social distancing.

According to Janse van Rensburg the theme of inequality in the South African milieu is further shown in the striking contrast between light and dark in the picture. “And now, with the COVID-19 pandemic placing a massive burden on an already struggling healthcare system the inequality is even more visible,” says Janse van Rensburg.

 

Janse van Rensburg’s late-night photo taken from the Pelonomi Hospital in Heidedal, Bloemfontein, shows the economic inequality that persists in South Africa. The photo was highly commended at the Imperial College London’s Global Creative Competition for Medical Student Responses to COVID-19.


A little shocked 

He was a little shocked when he heard his photograph was highly commended. Janse van Rensburg says: “Imperial College London is a big institution and being an international competition I did not really expect a lot. There were participants from over 52 countries, and having seen some of the works that were submitted it feels special to be one of the students being noticed.”

Janse van Rensburg, who has never considered doing art, heard about the competition through the Faculty of Health Sciences platforms during lockdown level 5. He saw it as an opportunity to reflect, which has become even more imperative in times like these.

He says he does not go searching for art, but “notices” it from being conscious – something he thinks is important in medicine and life.

Value of creativity in promoting mental well-being

Dr Lynette van der Merwe, undergraduate medical programme director, School of Clinical Medicine, congratulated Janse van Rensburg, saying this commendation in an international competition underscores his talent and the value of creativity in promoting mental well-being.

“Heinrich’s artwork and showcase precisely what we aspire to develop in our exceptional UFS doctors-in-training: a professional with self-awareness, empathy and humanity.

“We initiated a Mental Health Awareness initiative and art competition in the School of Clinical Medicine in 2018 to promote creative expression as a means of supporting students’ mental health. Heinrich has won awards with his creative contributions every year, exhibiting his imaginative ability.”

Surgery and photography

Janse van Rensburg says he has always loved beautiful things and the meaning people attach to art is a good way to communicate that. He has applied for an internship at the Mitchells Plain hospital for when he completes his studies at the end of this year and is thinking of specialising in reconstructive or pediatrics surgery. Besides that, he would like to tap into his creative side and continue with the photography.

  • Watch the video of the winners here

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept