Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2021 | Story Dr Chantell Witten | Photo Supplied
Dr Chantell Witten is from the Division of Health Professions Education.

A decade ago, Rob Nixon, a professor in the humanities and environment studies at Princeton University in the US, introduced the concept of slow violence in the context of climate change and environmentalism, explaining slow violence as violence that occurs gradually and out of sight, a violence of delayed destruction that is dispersed across time and space, an attritional violence that is typically not viewed as violence, at all. While profound, Professor Nixon’s concept of ”out-of-sight violence” and ”violence of delayed destruction” was challenged by Professor Thom Davies from the University of Nottingham in the UK who urged scholars to instead ask the question: ”out of sight to whom?” He argued that structural inequality mutated into noxious instances of immediate slow but pervasive violence by those who have endured toxic landscapes and unhealthy physical environments.

Reflecting on the impact of COVID-19 in the context of persistent hunger in South Africa’s cities, Dr Gareth Haysom from the University of Cape Town, challenged us as society to recognise the ”slow violence“ of hunger and food insecurity that are also often “experienced in private, incremental and accretive ways that are often invisible”. But as urged by Professor Davies, the question of child hunger and malnutrition in South Africa is really, to whom is this hunger and malnutrition invisible?

Malnutrition and its debilitating consequences have been studied and known about as far back as the 1950s. In 1976, Stoch and Smyth from the then Child Psychiatric Unit and Department of Paediatrics and Child Health at the University of Cape Town reported on a 15-year developmental study conducted from 1955 to 1970 on the effects of severe undernutrition during infancy on subsequent physical growth and intellectual functioning on coloured children from the Cape Flats concluded that the effects of severe undernutrition during infancy on subsequent brain growth and intellectual development confirmed gross retardation of intellect in the undernourished group when compared to the controls. Furthermore, the study concluded that given the abnormal performance of the control group that there was much evidence to suggest that the controls were also suboptimal in terms of nutritional status and intellectual functioning. This means that in general the nutritional status of coloured children on the Cape Flats was poor. Fast forward to 2021, and child nutrition in South Africa is still sub-optimal.

South Africa’s nutrition indicators have worsened

The most recent data from 2016 National Demographic Health Survey showed that 27% of children under the age of five years are stunted or too short for their age. This equates to more than 1.5 million children whose health and development is compromised and who have a lower chance of reaching their full potential even into their adult years. While many countries of the same economic development status have improved their nutrition indicators, South Africa’s nutrition indicators have worsened. South Africa has been identified as one of the countries with high levels of multiple forms of malnutrition manifested in high levels of stunting, childhood obesity and multiple micronutrient deficiencies, the most notable being vitamin A deficiency. These multiple forms of malnutrition cast a long shadow of ill-health and delayed development. of children, robbing them of quality of life and years of life in their childhood and their adult years. Malnutrition has a double cost on quality of life and additional health costs consuming resources that could have been spent on better food.

The right to have access to sufficient food is embedded in Section 26 and 27 of our Constitution and the right to adequate nutrition for children is stipulated in section 28. The Bill of Rights enshrined in the Constitution states that “every citizen has a right to have access to sufficient food, water and social security” and that “the State must take reasonable legislative and other measures, within its available resources, to achieve the progressive realisation of this right”. Before the onslaught of COVID-19, we as health and social care professionals, have been acutely aware that a significant number of South Africans do not have access to sufficient food and go hungry on a daily basis. Malnutrition is well-documented in South Africa and unfortunately is progressively getting worse.

SA has not prioritised children or the realisation of their human rights to food and nutrition

Better nutrition can only be achieved when food and care are available to young children but in the context of rising food prices, limited maternal support and a difficult psychosocial environment, mothers are not able to provide their children with a health-enabling environment. Our high levels of stunting and obesity levels reflect the chronic situation of poor-quality and inadequate diets coupled with poor caring practices. While these poor dietary practices are often individualised and focused on mothers, there are many systemic and structural barriers for families to access affordable and nutritious diets. The food environment is shaped by a profit-centred food system that comes at the cost of people’s health and well-being. Children have always being the prime focus of the food industry, from the promotion of maternal supplements to improved maternal nutrition for the developing foetus, to the promotion of infant formula as a convenient and easy-to-use alternative to breastfeeding, to the manipulative marketing of foods for and to children.

Child nutrition has become a global tracking indicator for both human and economic development. Sadly, our lack of progress over the past 20 years clearly illustrates that we, as a country, have not prioritised children or the realisation of their human rights to food and nutrition. The findings of the 2020 Child Gauge gives us, as a country, the opportunity to stop the violations of children’s rights and to end the slow violence of child malnutrition.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept