Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Artistic development at UFS to transform the face of Bloemfontein creatively
2015-07-02

The 7-metre high ‘Urban Fox’ is one of Alex Rinsler's artworks adding a fragment of the wild to the city of Shanghai in China.

Bold, bright, and beautiful public art sculptures are in the inception phase at the university’s Bloemfontein Campus. Manchester-based public artist, Alex Rinsler, of the Programme for Innovation in Artform Development (PIAD)’s forum for artist development, is to install three enthralling sculptures in the city of Bloemfontein.

The PIAD forum for artist development is an initiative of the Vrystaat Arts Festival, formerly known as the Vryfees, which aims to celebrate art in the Free State by hosting experimental art practices. In its capacity as a PIAD partner, the University of the Free State promotes increased access to, and participation in, culture as a form of human development.

Presenting an artist’s talk titled ‘Urban Safari: Art in public space,’ on the Bloemfontein Campus recently Rinsler introduced himself and his creative ideas to students, staff, and the public at the Johannes Stegman Art Gallery. The talk served as an invitation to the active participation of Bloemfontein citizens in all phases leading to the installations. Dispersed across the Mangaung Metropolitan, the giant sculptures are intended to capture and reflect different aspects of the community’s lived experiences. 

As a public artist based in the United Kingdom (UK), Rinsler has exhibited in cities nationally and internationally, with the intention of bringing a touch of the wild to urban lives. His vision is to witness the development of cities into cultural boulevards, and explore “what we can do to bring back the sense of nature, the wild” by adding new symbolism to urban lifestyle.

“I believe in creating work accessible to the public, which stimulates conversation,” said the Clore Leadership Programme Fellow (University of Manchester) and Founder of Pirate Technics - an artistic practice company.

In 2012, he worked with 31 Master’s students from 24 countries on an icon for global peace named “Under the Baobab” in London. The colourful and magnificent Baobab tree made from pieces of fabric representing distinct cultures told the story of migration to London.

Rinsler is determined that the Bloemfontein “project, similar to the London installation, will create imagery that people will remember.”

Dr Ricardo Peach, Director of the Vrystaat Arts Festival and PIAD, hopes the project fosters diversity while producing a “communal cultural product." 

“What I know about Alex’s work is that he will be working with what he calls a self-selected community, people who are interested in this, and who want to work together to build these sculptures, as part as a process for them to get a sense of where they belong, and their input into the city. It’s about people telling their own stories.”

The public installations are a way of transforming the landscape, and connecting people of “a place like Bloemfontein where communities are often still so divided,” said Peach.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept